Recent advancements in social media have generated a myriad of unstructured geospatial data. Travel narratives are among the richest sources of such spatial clues. They are also a reflection of writers’ interaction with places. One of the prevalent ways to model this interaction is a points of interest (POIs) graph depicting popular POIs and routes. A relevant notion is that frequent pairwise occurrences of POIs indicate their geographic proximity. This work presents an empirical interpretation of this theory and constructs spatially enriched POI graphs, a clear augmentation to popularity-based POI graphs. A triplet pattern, rule-based spatial relation extraction technique SpatRE is proposed and compared with standard relation extraction systems Ollie and Stanford OpenIE. A travel blogs data set is also contributed containing labelled spatial relations. The performance is further evaluated on SemEval 2013 benchmark data sets. Finally, spatially enriched POI graphs are qualitatively compared with TripAdvisor and Google Maps to visualise information accuracy.
Travel blogs are a significant source for modeling human travelling behavior and characterizing tourist destinations owing to the presence of rich geospatial and thematic content. However, the bulk of unstructured text requires extensive processing for an efficient transformation of data to knowledge. Existing works have studied tourist places, but results lack a coherent outline and visualization of the semantic knowledge associated with tourist attractions. Hence, this work proposes place semantics extraction based on a fusion of content analysis and natural language processing (NLP) techniques. A weighted-sum equation model is then employed to construct a points of interest graph (POI graph) that integrates extracted semantics with conventional frequency-based weighting of tourist spots and routes. The framework offers determination and visualization of massive blog text in a comprehensible manner to facilitate individuals in travel decision-making as well as tourism managers to devise effective destination planning and management strategies.
Online reviews are an important source of opinion to measure products’ quality. Hence, automated opinion mining is used to extract important features (aspect) and related comments (sentiment). Extraction of correct aspect-sentiment pairs is critical for overall outcome of opinion mining; however, current works still have limitations in terms of identifying special compound noun and parent-child relationship aspects in the extraction process. To address these problems, an aspect-sentiment pair extraction using the rules and compound noun lexicon (ASPERC) model is proposed. The model consists of three main phases, such as compound noun lexicon generation, aspect-sentiment pair rule generation, and aspect-sentiment pair extraction. The combined approach of rules generated from training sentences and domain specific compound noun lexicon enable extraction of more aspects by firstly identifying special compound noun and parent-child aspects, which eventually contribute to more aspect-sentiment pair extraction. The experiment is conducted with the SemEval 2014 dataset to compare proposed and baseline models. Both ASPERC and its variant, ASPER, result higher in recall (28.58% and 22.55% each) compared to baseline and satisfactorily extract more aspect sentiment pairs. Lastly, the reasonable outcome of ASPER indicates applicability of rules to various domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.