Abstract:The benefits provided by natural (e.g., non-engineered) tundra wetlands for the treatment of municipal wastewater in the Canadian Arctic are largely under-studied and, therefore, undervalued in regard to the treatment service wetlands provide to small remote Arctic communities. In this paper we present case studies on two natural tundra systems which at the time of study had different management practices, in which one consisted of a facultative lake system continuously discharging into a tundra wetland, while the second system had wastewater discharged directly into a tundra wetland. We also examine the utility of the SubWet 2.0 wetland model and how it can be used to: (i) predict the outcomes of management options; and (ii) to assess treatment capacity within individual tundra wetlands to meet future needs associated with population growth and to help municipalities determine the appropriate actions required to achieve the desired level of treatment, both currently, and in a sustainable long-term manner. From this examination we argue that tundra wetlands can significantly augment common treatment practices which rely on waste stabilization ponds, by recognizing the services that wetlands already provide. We
OPEN ACCESSWater 2014, 6 440 suggest that treatment targets could be more achievable if tundra wetlands are formally recognized as part of a hybridized treatment system that incorporates the combined benefits of both the waste stabilization pond and the tundra wetland. Under this scenario tundra wetlands would be recognized as part of the treatment process and not as the 'receiving' environment, which is how most tundra wetlands are currently categorized.