2022
DOI: 10.1287/ijoc.2022.1191
|View full text |Cite
|
Sign up to set email alerts
|

FrankWolfe.jl: A High-Performance and Flexible Toolbox for Frank–Wolfe Algorithms and Conditional Gradients

Abstract: We present FrankWolfe.jl, an open-source implementation of several popular Frank–Wolfe and conditional gradients variants for first-order constrained optimization. The package is designed with flexibility and high performance in mind, allowing for easy extension and relying on few assumptions regarding the user-provided functions. It supports Julia’s unique multiple dispatch feature, and it interfaces smoothly with generic linear optimization formulations using MathOptInterface.jl.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 14 publications
0
0
0
Order By: Relevance