2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE) 2019
DOI: 10.1109/iccike47802.2019.9004231
|View full text |Cite
|
Sign up to set email alerts
|

Fraud Detection using Machine Learning and Deep Learning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
38
1
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
4
1

Relationship

0
9

Authors

Journals

citations
Cited by 94 publications
(40 citation statements)
references
References 4 publications
0
38
1
1
Order By: Relevance
“…Mengingat maraknya penipuan pada situs e-commerce yang dapat mengakibatkan kerugian finansial yang cukup besar, sebagai konsumen perlu adanya pengetahuan mengenai jenis penipuan yang umum terjadi dan metode pencegahan yang digunakan untuk mendeteksi penipuan agar terhindar dari berbagai kerugian. Beberapa penelitian sebelumnya hanya membahas tentang identifikasi dan metode pencegahan penipuan e-commerce ( Makarti, 2011;Chang & Chang, 2012;Syed & Shabbir, 2013;Valentin, 2013;Caldeira, Brandao, & Pereira, 2014;Leung, Lai, Chen, & Wan, 2014;Massa & Valverde, 2014;Hwang & Lai, 2015;JRana & Baria, 2015;Singh & Singh, 2015;Abdallah, Maarof, & Zainal, 2016;Beránek, Nýdl, & Remeš, 2016;Gerlach, Pavlovic, & Gerlach, 2016;Lima & Pereira, 2016;Yang et al, 2016;Ramadhan & Amelia, 2016;Sun et al, 2017;Prisha, Neo, Ong, & Teo, 2017;Raghava-Raju, 2017;Shaji & Panchal, 2017;Wiralestari, 2017;Renjith, 2018;Weng et al, 2018;Zhao et al, 2018;Zheng et al, 2018); Amasiatu Amiruddin et al, 2019;Carta et al, 2019;Raghavan & Gayar, 2019;Shah et al, 2019;Soomro et al, 2019. Sementara penelitian lainnya lebih fokus pada penipuan sistem pembayaran dan penipuan terkait dengan pelanggan (Keraf & Hidup, 2010;Rofiq & Mula, 2010;Raj & Portia, 2011;Hu, Liu, & Sambamurthy, 2011;…”
Section: Pendahuluanunclassified
“…Mengingat maraknya penipuan pada situs e-commerce yang dapat mengakibatkan kerugian finansial yang cukup besar, sebagai konsumen perlu adanya pengetahuan mengenai jenis penipuan yang umum terjadi dan metode pencegahan yang digunakan untuk mendeteksi penipuan agar terhindar dari berbagai kerugian. Beberapa penelitian sebelumnya hanya membahas tentang identifikasi dan metode pencegahan penipuan e-commerce ( Makarti, 2011;Chang & Chang, 2012;Syed & Shabbir, 2013;Valentin, 2013;Caldeira, Brandao, & Pereira, 2014;Leung, Lai, Chen, & Wan, 2014;Massa & Valverde, 2014;Hwang & Lai, 2015;JRana & Baria, 2015;Singh & Singh, 2015;Abdallah, Maarof, & Zainal, 2016;Beránek, Nýdl, & Remeš, 2016;Gerlach, Pavlovic, & Gerlach, 2016;Lima & Pereira, 2016;Yang et al, 2016;Ramadhan & Amelia, 2016;Sun et al, 2017;Prisha, Neo, Ong, & Teo, 2017;Raghava-Raju, 2017;Shaji & Panchal, 2017;Wiralestari, 2017;Renjith, 2018;Weng et al, 2018;Zhao et al, 2018;Zheng et al, 2018); Amasiatu Amiruddin et al, 2019;Carta et al, 2019;Raghavan & Gayar, 2019;Shah et al, 2019;Soomro et al, 2019. Sementara penelitian lainnya lebih fokus pada penipuan sistem pembayaran dan penipuan terkait dengan pelanggan (Keraf & Hidup, 2010;Rofiq & Mula, 2010;Raj & Portia, 2011;Hu, Liu, & Sambamurthy, 2011;…”
Section: Pendahuluanunclassified
“…Vidanelage et al (2019) discussed varios machine learning techniques using "Scikit-learn Package in Python" to find the fraudulent transactions in dataset related payment [20]. Raghavan et al (2019) use the European (EU) Australian and German dataset and aim to benchmark deep learning and supervised machine learning methods [21]. Seemakurthi et al (2015) describe a new approach using texts classifers to detect fraudulent texts on text-based financial documents [22].…”
Section: Related Workmentioning
confidence: 99%
“…However, these efficiencies are often accompanied by increased complexity, and thus, raising concerns about the reliability of modern networks. Excessive use of these black-box predictors for critical topics such as medical diagnosis [3], [4], and particularly this case (fraud detection) [5], [6], [7], has made it extremely necessary to draw a line between well-grounded predictions and those with challenging inference. The lack of interpretability of the mentioned complex models is by no means the only issue.…”
Section: Introductionmentioning
confidence: 99%