In this work we present a large scale comparison study for the major machine learning models for time series forecasting. Specifically, we apply the models on the monthly M3 time series competition data (around a thousand time series). There have been very few, if any, large scale comparison studies for machine learning models for the regression or the time series forecasting problems, so we hope this study would fill this gap. The models considered are multilayer perceptron, Bayesian neural networks, radial basis functions, generalized regression neural networks (also called kernel regression), K-nearest neighbor regression, CART regression trees, support vector regression, and Gaussian processes. The study reveals significant differences between the different methods. The best two methods turned out to be the multilayer perceptron and the Gaussian process regression. In addition to model comparisons, we have tested different preprocessing methods and have shown that they have different impacts on the performance.Comparison study, Gaussian process regression, Machine learning models, Neural network forecasting, Support vector regression,
Supervised learning models most commonly use crisp labels for classifier training. Crisp labels fail to capture the data characteristics when overlapping classes exist. In this work we attempt to compare between learning using soft and hard labels to train K-nearest neighbor classifiers. We propose a new technique to generate soft labels based on fuzzy-clustering of the data and fuzzy relabelling of cluster prototypes. Experiments were conducted on five data sets to compare between classifiers that learn using different types of soft labels and classifiers that learn with crisp labels. Results reveal that learning with soft labels is more robust against label errors opposed to learning with crisp labels. The proposed technique to find soft labels from the data, was also found to lead to a more robust training in most data sets investigated.
Finding an image from a large set of images is an extremely difficult problem. One solution is to label images manually, but this is very expensive, time consuming and infeasible for many applications. Furthermore, the labeling process depends on the semantic accuracy in describing the image. Therefore many Content based Image Retrieval (CBIR) systems are developed to extract low-level features for describing the image content. However, this approach decreases the human interaction with the system due to the semantic gap between low-level features and highlevel concepts. In this study we make use of fuzzy logic to improve CBIR by allowing users to express their requirements in words, the natural way of human communication.In our system the image is represented by a Fuzzy Attributed Relational Graph (FARG) that describes each object in the image, its attributes and spatial relation. The texture and color attributes are computed in a way that model the Human Vision System (HSV). We proposed a new approach for graph matching that resemble the human thinking process. The proposed system is evaluated by different users with different perspectives and is found to match users' satisfaction to a high degree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.