Impacts of an inclined electromagnetic force on a mixed convective process in two‐sided lid‐driven geometries using the two‐energy equation model are examined in this study. The flow domain is filled by a porous medium and the local thermal nonequilibrium model is applied. Magnetic micropolar nanofluids are assumed as working fluids consisting of water as a base fluid and CuO as nanoparticles. The forced convection situation is due to the moving of the upper and lower walls in the right direction with a constant velocity. The used methodology depends on the finite volume method, together with the SIMPLE algorithm. The obtained outcomes are visualized using contours of the streamlines, isotherms for the nanofluid phase, isotherms for the solid phase, and angular velocity. The main findings revealed that the increase in lengths of the heated parts and the Nield number reduces the Nusselt number for the nanofluid phase. Also, the average heat transfer rate for the nanofluid and solid phases are boosted with the increase in the vortex viscosity.