This scoping review summarizes what is known about kidney metabolism during hypothermic perfusion preservation. Papers studying kidney metabolism during hypothermic (<12 °C) perfusion were identified (PubMed, Embase, Web of Science, Cochrane). Out of 14,335 initially identified records, 52 were included [dog (26/52), rabbit (2/52), pig (20/52), human (7/52)]. These were published between 1970–2023, partially explaining study heterogeneity. There is a considerable risk of bias in the reported studies. Studies used different perfusates, oxygenation levels, kidney injury levels, and devices and reported on perfusate and tissue metabolites. In 11 papers, (non)radioactively labeled metabolites (tracers) were used to study metabolic pathways. Together these studies show that kidneys are metabolically active during hypothermic perfusion, regardless of the perfusion setting. Although tracers give us more insight into active metabolic pathways, kidney metabolism during hypothermic perfusion is incompletely understood. Metabolism is influenced by perfusate composition, oxygenation levels, and likely also by pre-existing ischemic injury. In the modern era, with increasing donations after circulatory death and the emergence of hypothermic oxygenated perfusion, the focus should be on understanding metabolic perturbations caused by pre-existing injury levels and the effect of perfusate oxygen levels. The use of tracers is indispensable to understanding the kidney’s metabolism during perfusion, given the complexity of interactions between different metabolites.