2017
DOI: 10.48550/arxiv.1703.05843
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Free-monodromic mixed tilting sheaves on flag varieties

Abstract: In this paper we propose a construction of a monoidal category of "free-monodromic" tilting perverse sheaves on (Kac-Moody) flag varieties in the setting of the "mixed modular derived category" introduced by the first and third authors. This category shares most of the properties of their counterpart in characteristic 0, defined by Bezrukavnikov-Yun using certain pro-objects in triangulated categories. This construction is the main new ingredient in the forthcoming construction of a "modular Koszul duality" eq… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

3
89
0
1

Year Published

2017
2017
2019
2019

Publication Types

Select...
5
3

Relationship

7
1

Authors

Journals

citations
Cited by 12 publications
(93 citation statements)
references
References 11 publications
3
89
0
1
Order By: Relevance
“…) pour tout w ∈ W. Cette égalité peut également se démontrer directement (c'est-à-dire sans utiliser le Théorème 7.4) en utilisant les "objets libre-monodromiques" considérés dans [AMRW1]. Remarque 8.6.…”
Section: [D MIXunclassified
“…) pour tout w ∈ W. Cette égalité peut également se démontrer directement (c'est-à-dire sans utiliser le Théorème 7.4) en utilisant les "objets libre-monodromiques" considérés dans [AMRW1]. Remarque 8.6.…”
Section: [D MIXunclassified
“…The notion of a graded parity sheaf is equivalent to the notion of a "parity sequence" from [AMRW1]. The category of graded parity sheaves is denoted by Parity Z Gm (X , k).…”
Section: Preliminariesmentioning
confidence: 99%
“…This object is a "tilting perverse sheaf" in the sense of [BBM]. See [BBM,Remark 1.1(ii)], and see [AMRW1,Example 4.6.4] for a related object in the context of flag varieties.…”
Section: Examplesmentioning
confidence: 99%
See 1 more Smart Citation
“…In this language, the shifts [1] along the arrows are absorbed into the objects, and the whole picture looks more like a "classical" chain complex of parity sheaves. (Objects in mixed modular derived categories in [AR1,AR2,AMRW] were drawn in this way.) For n = 2, our object Z looks like Finally, on Gr ̟1 , we can redraw these complexes using the Elias-Williamson calculus to indicate the maps in the differentials.…”
Section: Examplesmentioning
confidence: 99%