A method for the isolation of single plant cells from Taxus suspension cultures has been developed for the analysis of single cells via rapid throughput techniques such as flow cytometry. Several cell wall specific enzymes, such as pectinase, pectolyase Y-23, macerozyme, Driselase(R), and cellulase were tested for efficacy in producing single cell suspensions. The method was optimized for single cell yield, viability, time, and representivity of aggregated cell cultures. The best combination for single cell isolation was found to be 0.5% (w/v) pectolyase Y-23 and 0.04% (w/v) cellulase. High viability (>95%) and high yields of single cell aggregates (>90%) were obtained following 4 hours of digestion for four separate Taxus cell lines. In addition, methyl jasmonate elicitation (200 microM) was found to have no effect on three of the four tested Taxus lines. Isolated single cells were statistically similar to untreated cell cultures for peroxidase activity (model cell wall protein) and paclitaxel content (secondary metabolite produced in Taxus cell cultures). In comparison, protoplasts showed marked changes in both peroxidase activity and paclitaxel content as compared to untreated cultures. The use of flow cytometry was demonstrated with isolated cells that were found to have > 99% viability upon staining with fluorescein diacetate. The development of a method for the isolation of single plant cells will allow the study of population dynamics and culture variability on a single cell level for the development of population models of plant cell cultures and secondary metabolism.