This paper focuses on the problem of frequency estimation of noise-contaminated sinusoidal. A basic tool to solve this problem is the interpolated discrete Fourier transform (DFT) algorithms, in which the influences of the spectral leakage from negative frequency are often neglected, resulting in significant errors in estimation when the signals contained small cycles. In this paper, analytic expressions of the interference due to the image component are derived and its influences on the traditional two-point interpolated DFT algorithms are analyzed. Based on the achieved expressions, the interpolated DFT algorithms are generalized and a novel frequency estimator with high image component interference rejection is proposed. Simulation results show that the frequency errors returned by the new algorithm are very small even though only one or two cycles are obtained. Comparative studies indicate that the new algorithm also has a good performance in the noise condition. With the advantages of high precision and strong robustness against additive noise, the proposed algorithm is a good choice for frequency estimation when the negative frequency interference is the dominant error source.