This paper presents the design and analysis of novel topologies of reflective-type negative-group-delay (NGD) networks with very small signal attenuation (SA). The proposed topologies are based on short-circuited coupled lines. Theoretical analysis shows that predefined group-delay (GD) time with very small SA can be obtained due to the high characteristic impedance of a coupled line and the small coupling coefficient. Due to the very low SA characteristics of the proposed networks, the burden of compensating general-purpose gain amplifiers can be reduced and provide stable operations while integrated to RF systems. This paper also analyses performance degradation of the GD time and SA of the proposed NGD networks according to the temperature-dependent resistance variation. For an experimental validation of the proposed topologies, distributed microstrip line NGD networks (type-I and type-II) are designed, simulated, and measured for a wideband code division multiple access (WCDMA) downlink frequency operating at a center frequency of 2.14 GHz. These results show a GD time of 7.27 ns with an SA of 7.43 dB for the type-I NGD network, and 6.3 and 9.23 dB for the type II-NGD network at the center frequency, and agree closely with the simulations. To enhance the NGD bandwidth, two NGD networks with slightly different center frequencies are connected in parallel, which provides wider bandwidth than the single stage case and shows practical applicability.Index Terms-Coupled lines, distributed transmission line, high characteristic impedance, low signal attenuation (SA), wideband code division multiple access (WCDMA).