Lymphomas are assumed to originate at different stages of lymphocyte development through chromosomal aberrations. Thus, different lymphomas resemble lymphocytes at distinct differentiation stages and show characteristic morphologic, genetic, and transcriptional features. Here, we have performed a microarray-based DNA methylation profiling of 83 mature aggressive B-cell non-Hodgkin lymphomas (maB-NHLs) characterized for their morphologic, genetic, and transcriptional features, including molecular Burkitt lymphomas and diffuse large B-cell lymphomas. Hierarchic clustering indicated that methylation patterns in maB-NHLs were not strictly associated with morphologic, genetic, or transcriptional features. By supervised analyses, we identified 56 genes de novo methylated in all lymphoma subtypes studied and 22 methylated in a lymphoma subtype-specific manner. Remarkably, the group of genes de novo methylated in all lymphoma subtypes was significantly enriched for polycomb targets in embryonic stem cells. De novo methylated genes in all maB-NHLs studied were expressed at low levels in lymphomas and normal hematopoietic tissues but not in nonhematopoietic tissues. These findings, especially the enrichment for polycomb targets in stem cells, indicate that maB-NHLs with different morphologic, genetic, and transcriptional background share a similar stem cell-like epigenetic pattern. This suggests that maB-NHLs originate from cells with stem cell features or that stemness was acquired during lymphomagenesis by epigenetic remodeling. (Blood. 2009; 113:2488-2497
IntroductionAberrant DNA methylation is a hallmark of cancer. Virtually all cancer types are associated with alterations of the methylome. These include global DNA hypomethylation, mostly targeting DNA repeats, and hypermethylation of CpG islands located in the promoter regions of tumor suppressor genes. [1][2][3][4] It is widely accepted that tumor suppressor gene inactivation by DNA hypermethylation allows the tumor clone to obtain a selective (eg, proliferative) advantage. However, recent reports have provided evidence for an instructive mechanism behind aberrant DNA methylation in cancer, which might indicate that specific sequences are predisposed to acquire epigenetic alterations. [5][6][7][8][9] Remarkably, 3 independent reports have recently shown that a highly significant proportion of genes becoming hypermethylated in cancer were already repressed at the embryonic stem cell (ESC) stage by polycomb group (PcG) marks. 7-9 These findings are considered to support the "cancer stem cell theory" in which The online version of this article contains a data supplement.The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked ''advertisement'' in accordance with 18 USC section 1734. For personal use only. on May 13, 2018. by guest www.bloodjournal.org From aberrant epigenetic changes of PcG target genes occurring in a cell with stem cell features might represent the ...