Campylobacter jejuni and Campylobacter coli are leading causes of human foodborne illness, with poultry as a major vehicle. Turkeys are frequently colonized with Campylobacter, but little is known about Campylobacter survival in turkey feces, even though fecal droppings are major vehicles for Campylobacter within-flock transmission as well as for environmental dissemination. Our objective was to examine survival of Campylobacter, including different strains, in freshly excreted feces from naturally colonized commercial turkey flocks and in suspensions of turkey feces in water from the turkey house. Fecal and water suspensions were stored at 4°C, and Campylobacter populations were enumerated on selective media at 48-h intervals. C. jejuni and C. coli isolates were characterized for resistance to a panel of antibiotics, and a subset was subtyped using multilocus sequence typing. Campylobacter was recovered from feces and water for up to 16 days. Analysis of 548 isolates (218 C. jejuni and 330 C. coli) revealed that C. jejuni survived longer than C. coli in feces (P = 0.0005), while the reverse was observed in water (P < 0.0001). Strain-specific differences in survival were noted. Multidrug-resistant C. jejuni isolates of sequence type 1839 (ST-1839) and the related ST-2935 were among the longest-surviving isolates in feces, being recovered for up to 10 to 16 days, while multidrug-resistant C. coli isolates of ST-1101 were recovered from feces for only up to 4 days. Data on Campylobacter survival upon excretion from the birds can contribute to further understanding of the transmission dynamics of this pathogen in the poultry production ecosystem.
IMPORTANCE Campylobacter jejuni and Campylobacter coli are leading foodborne pathogens, with poultry as a major reservoir. Due to their growth requirements, these Campylobacter spp. may be unable to replicate once excreted by their avian hosts, but their survival in feces and the environment is critical for transmission in the farm ecosystem. Reducing the prevalence of Campylobacter-positive flocks can have major impacts in controlling both contamination of poultry products and environmental dissemination of the pathogens. However, understanding the capacity of these pathogens to survive in transmission-relevant vehicles such as feces and farmhouse water remains poorly understood, and little information is available on species- and strain-associated differences in survival. Here, we employed model conditions to investigate the survival of C. jejuni and C. coli from naturally colonized turkey flocks, and with diverse genotypes and antimicrobial resistance profiles, in turkey feces and in farmhouse water.