General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. We show experimentally that the sliding friction on sand is greatly reduced by the addition of some-but not too much-water. The formation of capillary water bridges increases the shear modulus of the sand, which facilitates the sliding. Too much water, on the other hand, makes the capillary bridges coalesce, resulting in a decrease of the modulus; in this case, we observe that the friction coefficient increases again. Our results, therefore, show that the friction coefficient is directly related to the shear modulus; this has important repercussions for the transport of granular materials. In addition, the polydispersity of the sand is shown to also have a large effect on the friction coefficient.