Long-ranged forces between surfaces in a liquid control effects from colloid stability to biolubrication, and can be modified either by steric factors due to flexible polymers, or by surface charge effects. In particular, neutral polymer 'brushes' may lead to a massive reduction in sliding friction between the surfaces to which they are attached, whereas hydrated ions can act as extremely efficient lubricants between sliding charged surfaces. Here we show that brushes of charged polymers (polyelectrolytes) attached to surfaces rubbing across an aqueous medium result in superior lubrication compared to other polymeric surfactants. Effective friction coefficients with polyelectrolyte brushes in water are lower than about 0.0006-0.001 even at low sliding velocities and at pressures of up to several atmospheres (typical of those in living systems). We attribute this to the exceptional resistance to mutual interpenetration displayed by the compressed, counterion-swollen brushes, together with the fluidity of the hydration layers surrounding the charged, rubbing polymer segments. Our findings may have implications for biolubrication effects, which are important in the design of lubricated surfaces in artificial implants, and in understanding frictional processes in biological systems.
Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.
Mammalian synovial joints are extremely efficient lubrication systems reaching friction coefficient μ as low as 0.001 at high pressures (up to 100 atm) and shear rates (up to 10(6) to 10(7) Hz); however, despite much previous work, the exact mechanism responsible for this behavior is still unknown. In this work, we study the molecular mechanism of synovial joint lubrication by emulating the articular cartilage superficial zone structure. Macromolecules extracted and purified from bovine hip joints using well-known biochemical techniques and characterized with atomic force microscope (AFM) have been used to reconstruct a hyaluronan (HA)--aggrecan layer on the surface of molecularly smooth mica. Aggrecan forms, with the help of link protein, supramolecular complexes with the surface-attached HA similar to those at the cartilage/synovial fluid interface. Using a surface force balance (SFB), normal and shear interactions between a HA--aggrecan-coated mica surface and bare mica have been examined, focusing, in particular, on the frictional forces. In each stage, control studies have been performed to ensure careful monitoring of the macromolecular surface layers. We found the aggrecan--HA complex to be a much better boundary lubricant than the HA alone, an effect attributed largely to the fluid hydration sheath bound to the highly charged glycosaminoglycan (GAG) segments on the aggrecan core protein. A semiquantitative model of the osmotic pressure is used to describe the normal force profiles between the surfaces and interpret the boundary lubrication mechanism of such layers.
The lubrication of hydrogels arises from fluid or solvated surface phases. By contrast, the lubricity of articular cartilage, a complex biohydrogel, has been at least partially attributed to nonfluid, lipid-exposing boundary layers. We emulated this behavior in synthetic hydrogels by incorporating trace lipid concentrations to create a molecularly thin, lipid-based boundary layer that renews continuously. We observed a 80% to 99.3% reduction in friction and wear relative to the lipid-free gel, over a wide range of conditions. This effect persists when the gels are dried and then rehydrated. Our approach may provide a method for sustained, extreme lubrication of hydrogels in applications from tissue engineering to clinical diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.