Mammalian synovial joints are extremely efficient lubrication systems reaching friction coefficient μ as low as 0.001 at high pressures (up to 100 atm) and shear rates (up to 10(6) to 10(7) Hz); however, despite much previous work, the exact mechanism responsible for this behavior is still unknown. In this work, we study the molecular mechanism of synovial joint lubrication by emulating the articular cartilage superficial zone structure. Macromolecules extracted and purified from bovine hip joints using well-known biochemical techniques and characterized with atomic force microscope (AFM) have been used to reconstruct a hyaluronan (HA)--aggrecan layer on the surface of molecularly smooth mica. Aggrecan forms, with the help of link protein, supramolecular complexes with the surface-attached HA similar to those at the cartilage/synovial fluid interface. Using a surface force balance (SFB), normal and shear interactions between a HA--aggrecan-coated mica surface and bare mica have been examined, focusing, in particular, on the frictional forces. In each stage, control studies have been performed to ensure careful monitoring of the macromolecular surface layers. We found the aggrecan--HA complex to be a much better boundary lubricant than the HA alone, an effect attributed largely to the fluid hydration sheath bound to the highly charged glycosaminoglycan (GAG) segments on the aggrecan core protein. A semiquantitative model of the osmotic pressure is used to describe the normal force profiles between the surfaces and interpret the boundary lubrication mechanism of such layers.
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer (BC) with a poor prognosis. Current treatment options are limited to surgery, adjuvant chemotherapy and radiotherapy; however, a proportion of patients have missed the surgical window at the time of diagnosis. TNBC is a highly heterogeneous cancer with specific mutations and aberrant activation of signaling pathways. Hence, targeted therapies, such as those targeting DNA repair pathways, androgen receptor signaling pathways, and kinases, represent promising treatment options against TNBC. In addition, immunotherapy has also been demonstrated to improve overall survival and response in TNBC. In this review, we summarize recent key advances in therapeutic strategies based on molecular subtypes in TNBC.
Using a surface force balance, normal and shear interactions have been measured between two atomically smooth surfaces coated with hyaluronan (HA), and with HA/aggrecan (Agg) complexes stabilized by cartilage link protein (LP). Such HA/Agg/LP complexes are the most abundant mobile macromolecular species permeating articular cartilage in synovial joints and have been conjectured to be present as boundary lubricants at its surface. The aim of the present study is to gain insight into the extremely efficient lubrication when two cartilage surfaces slide past each other in healthy joints, and in particular to elucidate the possible role in this of the HA/Agg/LP complexes. Within the range of our parameters, our results reveal that the HA/Agg/LP macromolecular surface complexes are much better boundary lubricants than HA alone, likely because of the higher level of hydration, due to the higher charge density, of the HA/Agg/LP layers with respect to the HA alone. However, the friction coefficients (μ) associated with the mutual interactions and sliding of opposing HA/Agg/LP layers (μ ≈ 0.01 up to pressure P of ca. 12 atm, increasing sharply at higher P) suggest that such complexes by themselves cannot account for the remarkable boundary lubrication observed in mammalian joints (up to P > 50 atm).
Phospholipids (PL) form the matrix of biological membranes and of the lipoprotein envelope monolayer, and are responsible for many of the unique physicochemical, biochemical, and biological properties of these supermolecular bioassemblies. It was suggested that phospholipids present in the synovial fluid (SF) and on the surface of articular cartilage have major involvement in the low friction of cartilage, which is essential for proper mobility of synovial joints. In pathologies, such as impaired biolubrication (leading to common joint disorders such as osteoarthritis), the level of phospholipids in the SF is reduced. Using a human-sourced cartilage-on-cartilage setup, we studied to what extent and how phospholipids act as highly effective cartilage biolubricants. We found that large multilamellar vesicles (MLV), >800 nm in diameter, composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or of a mixture of DMPC and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) are superior lubricants in comparison to MLV composed of other phosphatidylcholines. Introducing cholesterol into liposomes resulted in less effective lubricants. DMPC-MLV was also superior to small unilamellar vesicles (SUV), <100 nm in diameter, composed of DMPC. MLV are superior to SUV due to MLV retention at and near (<200 microm below) the cartilage surface, while SUV penetrate deeper into the cartilage (450-730 microm). Superiority of specific PL compositions is explained by the thermotropic behavior (including compressibility) of the lipid bilayer. Correlating physicochemical properties of the MLV with the friction results suggests that MLV having lipid bilayers in the liquid-disordered phase and having a solid-ordered to liquid-disordered phase transition temperature slightly below physiological temperature are optimal for lubrication. High phospholipid headgroup hydration, high compressibility, and softness are the common denominators of all efficient PL compositions. The high efficiency of DMPC-MLV and DMPC/DPPC-MLV as cartilage lubricants combined with their resistance to degradation at 37 degrees C supports further evaluation of these MLV for treatment of joint impairments related to poor lubrication. This work also demonstrates the relevance of basic physicochemical properties of phospholipids to their activities in biological systems.
Molecular turnover rates of the major constituent matrix macromolecules of the IVD are found to be particularly slow, especially in the case of collagen. Over a normal human life span, this slow turnover may compromise the structural integrity of the IVD extracellular matrix essential for normal physiological functioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.