AbstractÀA 96% polycrystalline alumina (Al 2 O 3 ) based prototype packaging system with Au thick-film metallization successfully facilitated long term testing of high temperature SiC electronic devices for over 10,000 h at 5008C previously. However, the 96% Al 2 O 3 chip-level packages of this prototype system were not fabricated via a commercial cofire process, which would be more suitable for large scale commercial production. The cofired alumina materials adopted by the packaging industry today usually contain several percent of glass constituents to allow cofiring processes at temperatures usually lower than the regular sintering temperature for alumina. In order to answer the question of whether cofired alumina substrates can provide a reasonable high temperature electrical performance comparable to regular 96% alumina sintered at 17008C, this paper reports on the dielectric performance of a selected high temperature cofired ceramic (HTCC) alumina substrate and a low temperature cofired ceramic (LTCC) alumina (polycrystalline aluminum oxides with glass constituents) substrate from room temperature to 5508C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. Parallel-plate capacitive devices with dielectrics of these cofired alumina and precious metal electrodes were used for measurement of the dielectric properties of the cofired alumina materials in the temperature and frequency ranges. The capacitance and AC parallel conductance of these capacitive devices were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of selected LTCC and HTCC cofired alumina substrates are presented and compared with those of 96% alumina. Metallization schemes for cofired alumina for high temperature applications are discussed to address the packaging needs for low-power 5008C SiC electronics.