Traceability, quality and safety of edible insects are important both for the producers and the consumers. Today, alongside the burst of edible insects in western countries, we are facing a gap of knowledge of insect microbiota associated with the microbial ecosystems of insectbased products. Recent studies suggest that the insect microbiota can vary between insect species and that can be shaped by additional factors, such as rearing conditions. Also, the production processes of raw materials (i.e. insect flour) into final food products can affect the insect microbiota too. This has consequences for the evaluation of food safety and food traceability. In this context, High-Throughput DNA Sequencing (HTS) techniques can give insight into the carryover of insect microbiota into final food products. In this study, we investigated the microbiota composition of insect-based commercial food products, applying 2 HTS techniques coupled with bioinformatic analysis. The aim of this work was to analyse the microbiota variability of different categories of insect-based products made of A. domesticus (house cricket), T. molitor (mealworm beetle), and A. diaperinus (lesser mealworm or litter beetle), including commercial raw materials and processed food items, purchased via ecommerce from different companies. Our data revealed that samples cluster per insect species based on microbiota profile and preliminary results suggested that a small number of prevalent bacteria formed a "core microbiota" characterizing the products depending on the insect, suggesting that a resident microbiota is conserved. This microbial signature can be recognized despite the different food processing levels, rearing conditions selling companies.We showed that differences exist when comparing raw vs processed food made of the same insect, or similar products produced by different companies as well, laying the groundwork for further analyses. These results support the application of HTS analysis for studying the composition of processed insect food in a wider perspective, for food traceability and food quality control.