The evolution of the traditional Web into the semantic Web makes the machine a first-class citizen on the Web and increases the discovery and accessibility of unstructured Web-based data. This development makes it possible to use Linked Data technology as the background knowledge base for unstructured data, especially texts, now available in massive quantities on the Web. Given any text, the main challenge is determining DBpedia's most relevant information with minimal effort and time. Although, DBpedia annotation tools, such as DBpedia spotlight, mainly targeted English and Latin DBpedia versions. The current situation of the Arabic language is less bright; the Web content of the Arabic language does not reflect the importance of this language. Thus, we have developed an approach to annotate Arabic texts with Linked Open Data, particularly DBpedia. This approach uses natural language processing and machine learning techniques for interlinking Arabic text with Linked Open Data. Despite the high complexity of the independent domain knowledge base and the reduced resources in Arabic natural language processing, the evaluation results of our approach were encouraging.