Motivation: New single-cell technologies continue to fuel the explosive growth in the scale of heterogeneous single-cell data. However, existing computational methods are inadequately scalable to large datasets and therefore cannot uncover the complex cellular heterogeneity.
Results:We introduce a highly scalable graph-based clustering algorithm PARCphenotyping by accelerated refined community-partitioning -for ultralarge-scale, high-dimensional single-cell data (> 1 million cells). Using large single cell mass cytometry, RNA-seq and imaging-based biophysical data, we demonstrate that PARC consistently outperforms state-of-the-art clustering algorithms without sub-sampling of cells, including Phenograph, FlowSOM, and Flock, in terms of both speed and ability to robustly detect rare cell populations. For example, PARC can cluster a single cell data set of 1.1M cells within 13 minutes, compared to >2 hours to the next fastest graph-clustering algorithm, Phenograph. Our work presents a scalable algorithm to cope with increasingly large-scale single-cell analysis.Availability and Implementation: https://github.com/ShobiStassen/PARC Contact: tsia@hku.hk