We present VOSviewer, a freely available computer program that we have developed for constructing and viewing bibliometric maps. Unlike most computer programs that are used for bibliometric mapping, VOSviewer pays special attention to the graphical representation of bibliometric maps. The functionality of VOSviewer is especially useful for displaying large bibliometric maps in an easy-to-interpret way. The paper consists of three parts. In the first part, an overview of VOSviewer’s functionality for displaying bibliometric maps is provided. In the second part, the technical implementation of specific parts of the program is discussed. Finally, in the third part, VOSviewer’s ability to handle large maps is demonstrated by using the program to construct and display a co-citation map of 5,000 major scientific journals.
Community detection is often used to understand the structure of large and complex networks. One of the most popular algorithms for uncovering community structure is the so-called Louvain algorithm. We show that this algorithm has a major defect that largely went unnoticed until now: the Louvain algorithm may yield arbitrarily badly connected communities. In the worst case, communities may even be disconnected, especially when running the algorithm iteratively. In our experimental analysis, we observe that up to 25% of the communities are badly connected and up to 16% are disconnected. To address this problem, we introduce the Leiden algorithm. We prove that the Leiden algorithm yields communities that are guaranteed to be connected. In addition, we prove that, when the Leiden algorithm is applied iteratively, it converges to a partition in which all subsets of all communities are locally optimally assigned. Furthermore, by relying on a fast local move approach, the Leiden algorithm runs faster than the Louvain algorithm. We demonstrate the performance of the Leiden algorithm for several benchmark and real-world networks. We find that the Leiden algorithm is faster than the Louvain algorithm and uncovers better partitions, in addition to providing explicit guarantees.
Clustering scientific publications in an important problem in bibliometric research. We demonstrate how two software tools, CitNetExplorer and VOSviewer, can be used to cluster publications and to analyze the resulting clustering solutions. CitNetExplorer is used to cluster a large set of publications in the field of astronomy and astrophysics. The publications are clustered based on direct citation relations. CitNetExplorer and VOSviewer are used together to analyze the resulting clustering solutions. Both tools use visualizations to support the analysis of the clustering solutions, with CitNetExplorer focusing on the analysis at the level of individual publications and VOSviewer focusing on the analysis at an aggregate level. The demonstration provided in this paper shows how a clustering of publications can be created and analyzed using freely available software tools. Using the approach presented in this paper, bibliometricians are able to carry out sophisticated cluster analyses without the need to have a deep knowledge of clustering techniques and without requiring advanced computer skills.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.