Due to the environmental threats of municipal plastic waste generation, plastic waste is obvious to recycle for a satisfying plastic-free environment. Lots of techniques are available for plastic waste recycling; however, the thermal cracking was found as a powerful technology to decrease plastic waste pollution simultaneously, producing petroleum-derived products. The objective of this investigation is to convert high-quality gasoline fuel from the plastic-based glucose bottles (GB) by the thermal cracking process at moderate reaction conditions. In this investigation, the waste plastic was thermally cracked in a batch reactor at a temperature range between 350-500°C, and the reaction time varied from 60-120 min, respectively. As a result, the most extreme yield percentage of liquid fuel 72.80% was obtained at an optimum temperature of 450°C and 90 min of reaction time. The derived liquid fuel contains mainly of aromatic functional groups (C=C stretch), and that is made out of gasoline-range hydrocarbons with a carbon number of C 4-C 28. Henceforth, the produced liquid fuel was termed as aromatic liquid hydrocarbon fuel (ALHF), and that would be recommended for use as commercial gasoline fuel.