2022
DOI: 10.2214/ajr.21.26486
|View full text |Cite
|
Sign up to set email alerts
|

Fully Automated Deep Learning Tool for Sarcopenia Assessment on CT: L1 Versus L3 Vertebral Level Muscle Measurements for Opportunistic Prediction of Adverse Clinical Outcomes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

3
32
0
3

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 34 publications
(38 citation statements)
references
References 33 publications
3
32
0
3
Order By: Relevance
“…By decomposing the C3 detection and SM segmentation problem into two separate tasks, we ensure that accurate representations of patient anatomy are identified by the models (C3 region) and subsequently maximize performance for SM segmentation. While previous SM auto-segmentation studies often required specific slices as model inputs ( 21 , 26 ) or utilized separate pre-processing software ( 23 , 25 ), multi-stage deep learning methods have recently been adapted in this domain as well ( 22 , 24 ). Both the 2D and 3D ResUNet models that make up our segmentation pipeline had high performance, with mean DSC values in the test set above 0.95.…”
Section: Discussionmentioning
confidence: 99%
“…By decomposing the C3 detection and SM segmentation problem into two separate tasks, we ensure that accurate representations of patient anatomy are identified by the models (C3 region) and subsequently maximize performance for SM segmentation. While previous SM auto-segmentation studies often required specific slices as model inputs ( 21 , 26 ) or utilized separate pre-processing software ( 23 , 25 ), multi-stage deep learning methods have recently been adapted in this domain as well ( 22 , 24 ). Both the 2D and 3D ResUNet models that make up our segmentation pipeline had high performance, with mean DSC values in the test set above 0.95.…”
Section: Discussionmentioning
confidence: 99%
“…Bei der Geschlechterverteilung werden je nach verwendeter Definition und Population teils bei Männern, teils aber auch bei Frauen höhere Prävalenzen angegeben oder geschätzt [6]. Es existieren bereits einige Studien mit großen Fallzahlen, die sich mit der Prävalenz, den Risikofaktoren und dem Screening der Sarkopenie beschäftigt haben [7][8][9][10]. So ergab die "UK Biobank"-Studie mit 168 682 Teilnehmern ein erhöhtes Osteoporoserisiko bei präsarkopenen Männern und sarkopenen Frauen [10].…”
Section: Definitionunclassified
“…In some studies, muscle and fat tissue in CT and MRI datasets has already been analyzed using artificial intelligence (AI) 9 54 55 56 57 . In their study including 1143 CT datasets, Nowak et al used two neuronal networks 57 .…”
Section: Artificial Intelligence In Sarcopenia Diagnosismentioning
confidence: 99%
See 2 more Smart Citations