Purpose The aims of this study were (1) to determine the prevalence of radiographic cervical disc degeneration in a large population of patients aged from 18 to 97 years; (2) to investigate individually the prevalence and distribution of height loss, osteophyte formation, endplate sclerosis and spondylolisthesis; and (3) to describe the patterns of cervical disc degeneration. Methods A retrospective study was performed. Standard lateral cervical spine radiographs in standing, neutral position of 1581 consecutive patients (723 males, 858 females) with an average age of 41.2 ± 18.2 years were evaluated. Cervical disc degeneration was graded from C2/C3 to C6/C7 based on a validated quantitative grading system. The prevalence and distribution of radiographic findings were evaluated and associations with age were investigated. Results 53.9% of individuals had radiographic disc degeneration and the most affected level was C5/C6. The presence and severity of disc degeneration were found to be significantly associated with age both in male and female subjects. The most frequent and severe occurrences of height loss, osteophyte formation, and endplate sclerosis were at C5/C6, whereas spondylolisthesis was most observed at C4/C5. Age was significantly correlated with radiographic degenerative findings. Contiguous levels degeneration pattern was more likely found than skipped level degeneration. The number of degenerated levels was also associated with age. Conclusions The presence and severity of radiographic disc degeneration increased with aging in the cervical spine. Older age was associated with greater number of degenerated disc levels. Furthermore, the correlations between age and the degree of degenerative findings were stronger at C5/C6 and C6/C7 than at other cervical spinal levels.
Osteoporosis is a highly prevalent systemic skeletal disease that is characterized by low bone mass and microarchitectural bone deterioration. It predisposes to fragility fractures that can occur at various sites of the skeleton, but vertebral fractures (VFs) have been shown to be particularly common. Prevention strategies and timely intervention depend on reliable diagnosis and prediction of the individual fracture risk, and dual-energy X-ray absorptiometry (DXA) has been the reference standard for decades. Yet, DXA has its inherent limitations, and other techniques have shown potential as viable add-on or even stand-alone options. Specifically, three-dimensional (3 D) imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), are playing an increasing role. For CT, recent advances in medical image analysis now allow automatic vertebral segmentation and value extraction from single vertebral bodies using a deep-learning-based architecture that can be implemented in clinical practice. Regarding MRI, a variety of methods have been developed over recent years, including magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water-fat MRI (CSE-MRI) that enable the extraction of a vertebral body’s proton density fat fraction (PDFF) as a promising surrogate biomarker of bone health. Yet, imaging data from CT or MRI may be more efficiently used when combined with advanced analysis techniques such as texture analysis (TA; to provide spatially resolved assessments of vertebral body composition) or finite element analysis (FEA; to provide estimates of bone strength) to further improve fracture prediction. However, distinct and experimentally validated diagnostic criteria for osteoporosis based on CT- and MRI-derived measures have not yet been achieved, limiting broad transfer to clinical practice for these novel approaches. Key Points: Citation Format
Orbital masses include a broad spectrum of benign and malignant entities. Often these masses are asymptomatic or show a slow growth rate, so that emergence of clinical symptoms is prolonged. In this context, cross-sectional imaging plays an elementary role in the characterization of these lesions. Aside from the characterization of the underlying entity, an evaluation of the involved compartments is possible by sufficient imaging, which also facilitates optimal treatment and surgery planning. The purpose of this review is to explore different benign and malignant orbital tumors and their typical appearance in imaging together with histopathologic findings.
Background Iterative reconstruction is well established for CT. Plain radiography also takes advantage of iterative algorithms to reduce scatter radiation and improve image quality. First applications have been described for bedside chest X-ray. A recent experimental approach also provided proof of principle for skeletal imaging. Purpose To examine clinical applicability of iterative scatter correction for skeletal imaging in the trauma setting. Material and Methods In this retrospective single-center study, 209 grid-less radiographs were routinely acquired in the trauma room for 12 months, with imaging of the chest (n = 31), knee (n = 111), pelvis (n = 14), shoulder (n = 24), and other regions close to the trunk (n = 29). Radiographs were postprocessed with iterative scatter correction, doubling the number of images. The radiographs were then independently evaluated by three radiologists and three surgeons. A five-step rating scale and visual grading characteristics analysis were used. The area under the VGC curve (AUCVGC) quantified differences in image quality. Results Images with iterative scatter correction were generally rated significantly better (AUCVGC = 0.59, P < 0.01). This included both radiologists (AUCVGC = 0.61, P < 0.01) and surgeons (AUCVGC = 0.56, P < 0.01). The image-improving effect was significant for all body regions; in detail: chest (AUCVGC = 0.64, P < 0.01), knee (AUCVGC = 0.61, P < 0.01), pelvis (AUCVGC = 0.60, P = 0.01), shoulder (AUCVGC = 0.59, P = 0.02), and others close to the trunk (AUCVGC = 0.59, P < 0.01). Conclusion Iterative scatter correction improves the image quality of grid-less skeletal radiography in the clinical setting for a wide range of body regions. Therefore, iterative scatter correction may be the future method of choice for free exposure imaging when an anti-scatter grid is omitted due to high risk of tube-detector misalignment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.