The COVID-19 pandemic has resulted in significant morbidity and mortality worldwide. To prevent severe infection, mass COVID-19 vaccination campaigns with several vaccine types are currently underway. We report pathological and immunological findings in 8 patients who developed vaccine-induced immune thrombotic thrombocytopenia (VITT) after administration of SARS-CoV-2 vaccine ChAdOx1 nCoV-19. We analyzed patient material using enzyme immune assays, flow cytometry and heparin-induced platelet aggregation assay and performed autopsies on two fatal cases. Eight patients (5 female, 3 male) with a median age of 41.5 years (range, 24 to 53) were referred to us with suspected thrombotic complications 6 to 20 days after ChAdOx1 nCoV-19 vaccination. All patients had thrombocytopenia at admission. Patients had a median platelet count of 46.5 x109/L (range, 8 to 92). Three had a fatal outcome and 5 were successfully treated. Autopsies showed arterial and venous thromboses in various organs and the occlusion of glomerular capillaries by hyaline thrombi. Sera from VITT patients contain high titer antibodies against platelet factor 4 (PF4) (OD 2.59±0.64). PF4 antibodies in VITT patients induced significant increase in procoagulant markers (P-selectin and phosphatidylserine externalization) compared to healthy volunteers and healthy vaccinated volunteers. The generation of procoagulant platelets was PF4 and heparin dependent. We demonstrate the contribution of antibody-mediated platelet activation in the pathogenesis of VITT.
Infection of humans by the larval stage of the tapeworms Echinococcus granulosus sensu lato or Echinococcus multilocularis causes the life-threatening zoonoses cystic echinococcosis (CE) and alveolar echinococcosis (AE). Although cystic liver lesions are a hallmark of both diseases, course, prognosis, and patients' management decisively differ between the two. The wide and overlapping spectrum of morphologies and the limited availability of ancillary tools are challenges for pathologists to reliably diagnose and subtype echinococcosis. Here, we systematically and quantitatively recorded the pathologic spectrum in a clinically and molecularly defined echinococcosis cohort (138 specimens from 112 patients). Immunohistochemistry using a novel monoclonal antibody (mAbEmG3) was implemented, including its combined application with the mAbEm2G11. Six morphologic criteria sufficiently discriminated between CE and AE: size of smallest (CE/AE: >2/2 mm) and largest cyst (CE/AE: >25/25 mm), thickness of laminated layer (CE/AE: >0.15/0.15 mm) and pericystic fibrosis (CE/AE: >0.6/0.6 mm), striation of laminated layer (CE/AE: moderate-strong/weak), and number of cysts (CE/AE: 9/>9). Combined immunohistochemistry with mAbEm2G11 (E. multilocularis specific) and mAbEmG3 (reactive in AE and CE) was equally specific as and occasionally more sensitive than polymerase chain reaction. On the basis of these findings, we developed a diagnostic algorithm for the differential diagnosis of echinococcosis. In summary, we have not only identified the means to diagnose echinococcosis with greater certainty, but also defined morphologic criteria, which robustly discriminate between CE and AE. We expect our findings to improve echinococcosis diagnostics, especially of challenging cases, beneficially impacting the management of echinococcosis patients.
Alveolar echinococcosis (AE) is caused by the intermediate stage of Echinococcus multilocularis. We aimed to correlate computed tomography (CT) data with histology to identify distinct characteristics for different lesion types. We classified 45 samples into five types with the Echinococcus multilocularis Ulm Classification for Computed Tomography (EMUC-CT). The various CT lesions exhibited significantly different histological parameters, which led us to propose a progression model. The initial lesion fit the CT type IV classification, which comprises a single necrotic area with the central located laminated layer, a larger distance between laminated layer and border zone, a small fibrotic peripheral zone, and few small particles of Echinococcus multilocularis (spems). Lesions could progress through CT types I, II, and III, characterized by shorter distances between laminated layer and border zone, more spems inside and surrounding the lesion, and a pronounced fibrotic rim (mostly in type III). Alternatively, lesions could converge to a highly calcified, regressive state (type V). Our results suggest that the CT types mark sequential stages of the infection, which progress over time. These distinct histological patterns advance the understanding of interactions between AE and human host; moreover, they might become prognostically and therapeutically relevant.
The clinical, radiological and pathological features of eight cases of supratentorial primitive neuroectodermal tumour are reviewed. These are tumours of children and young adults presenting with symptoms and signs of raised intracranial pressure. Radiologically they are characterized by a large enhancing mass lesion exciting little or modest surrounding oedema, with a propensity to develop in the frontal lobes. One tumour exhibited the pathological features of a primitive neuroectodermal tumour (PNET) with ependymal differentiation (ependymoblastoma). The rest showed no light microscopy patterns to indicate differentiation. Immunohistochemistry was helpful as it excluded other causes of a 'small blue cell' tumour but did not help in assessing differentiation. Ultrastructural examination of this group of apparently undifferentiated tumours showed focal markers of neuronal differentiation. Although features of neuronal differentiation can be found ultrastructurally in these tumours this is only evident after prolonged searching, often of several blocks, making assessment very prone to sampling errors. The term PNET thus remains appropriate and serves to group such tumours together to facilitate rational clinical management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.