Myosin heavy chain 9 (MYH9)-related platelet disorders belong to the group of inherited thrombocytopenias. The MYH9 gene encodes the nonmuscle myosin heavy chain IIA (NMMHC-IIA), a cytoskeletal contractile protein. Several mutations in the MYH9 gene lead to premature release of platelets from the bone marrow, macrothrombocytopenia, and cytoplasmic inclusion bodies within leukocytes. Four overlapping syndromes, known as May-Hegglin anomaly, Epstein syndrome, Fechtner syndrome, and Sebastian platelet syndrome, describe different clinical manifestations of MYH9 gene mutations. Macrothrombocytopenia is present in all affected individuals, whereas only some develop additional clinical manifestations such as renal failure, hearing loss, and presenile cataracts. The bleeding tendency is usually moderate, with menorrhagia and easy bruising being most frequent. The biggest risk for the individual is inappropriate treatment due to misdiagnosis of chronic autoimmune thrombocytopenia. To date, 31 mutations of the MYH9 gene leading to macrothrombocytopenia have been identified, of which the upstream mutations up to amino acid $1400 are more likely associated with syndromic manifestations than the downstream mutations. This review provides a short history of MYH9-related disorders, summarizes the clinical and laboratory characteristics, describes a diagnostic algorithm, presents recent results of animal models, and discusses aspects of therapeutic management.
The pathophysiology of COVID-19 associated thrombosis seems to be multifactorial. We hypothesized that COVID-19 is accompanied by procoagulant platelets and platelet apoptosis with subsequent alteration of the coagulation system. We investigated depolarization of mitochondrial inner transmembrane potential (ΔΨm), cytosolic calcium (Ca2+) concentration, and phosphatidylserine (PS) externalization by flow cytometry. Platelets from intensive care unit (ICU) COVID-19 patients (n=21) showed higher ΔΨm depolarization, cytosolic Ca2+ concentration and PS externalization, compared to healthy controls (n=18) and COVID-19 non-ICU patients (n=4). Moreover significant higher cytosolic Ca2+ concentration and PS was observed compared to septic ICU control group (ICU control). In ICU control group (n=5; ICU non-COVID-19) cytosolic Ca2+ concentration and PS externalization was comparable to healthy control, with an increase in ΔΨm depolarization. Sera from ICU COVID-19 patients induced significant increase in apoptosis markers (ΔΨm depolarization, cytosolic Ca2+ concentration and PS externalization) compared to healthy volunteer and septic ICU control. Interestingly, immunoglobulin G (IgG) fractions from COVID-19 patients induced an Fc gamma receptor IIA dependent platelet apoptosis (ΔΨm depolarization, cytosolic Ca2+ concentration and PS externalization). Enhanced PS externalization in platelets from ICU COVID-19 patients was associated with increased sequential organ failure assessment (SOFA) score (r=0.5635) and D-Dimer (r=0.4473). Most importantly, patients with thrombosis had significantly higher PS externalization compared to those without. The strong correlations between procoagulant platelet and apoptosis markers and increased D-Dimer levels as well as the incidence of thrombosis may indicate that antibody-mediated platelet apoptosis potentially contributes to sustained increased thromboembolic risk in ICU COVID-19 patients.
Vaccine administration is under way worldwide to combat the current COVID-19 pandemic. The newly developed vaccines are highly effective with minimal adverse effects. Recently, the AstraZeneca ChadOx1 nCov-19 vaccine has raised public alarm with concerns regarding the rare, but serious, development of thrombotic events, now known as vaccine-induced immune thrombotic thrombocytopenia (VITT). These thrombotic events appear similar to heparin-induced thrombocytopenia, both clinically and pathologically. In this manuscript, the ISTH SSC Subcommittee on Platelet Immunology outlines guidelines on how to recognize, diagnose and manage patients with VITT.
SARS-CoV-2 is evolving with mutations in the receptor binding domain (RBD) being of particular concern. It is important to know how much cross-protection is offered between strains following vaccination or infection. Here, we obtain serum and saliva samples from groups of vaccinated (Pfizer BNT-162b2), infected and uninfected individuals and characterize the antibody response to RBD mutant strains. Vaccinated individuals have a robust humoral response after the second dose and have high IgG antibody titers in the saliva. Antibody responses however show considerable differences in binding to RBD mutants of emerging variants of concern and substantial reduction in RBD binding and neutralization is observed against a patient-isolated South African variant. Taken together our data reinforce the importance of the second dose of Pfizer BNT-162b2 to acquire high levels of neutralizing antibodies and high antibody titers in saliva suggest that vaccinated individuals may have reduced transmission potential. Substantially reduced neutralization for the South African variant further highlights the importance of surveillance strategies to detect new variants and targeting these in future vaccines.
The COVID-19 pandemic has resulted in significant morbidity and mortality worldwide. To prevent severe infection, mass COVID-19 vaccination campaigns with several vaccine types are currently underway. We report pathological and immunological findings in 8 patients who developed vaccine-induced immune thrombotic thrombocytopenia (VITT) after administration of SARS-CoV-2 vaccine ChAdOx1 nCoV-19. We analyzed patient material using enzyme immune assays, flow cytometry and heparin-induced platelet aggregation assay and performed autopsies on two fatal cases. Eight patients (5 female, 3 male) with a median age of 41.5 years (range, 24 to 53) were referred to us with suspected thrombotic complications 6 to 20 days after ChAdOx1 nCoV-19 vaccination. All patients had thrombocytopenia at admission. Patients had a median platelet count of 46.5 x109/L (range, 8 to 92). Three had a fatal outcome and 5 were successfully treated. Autopsies showed arterial and venous thromboses in various organs and the occlusion of glomerular capillaries by hyaline thrombi. Sera from VITT patients contain high titer antibodies against platelet factor 4 (PF4) (OD 2.59±0.64). PF4 antibodies in VITT patients induced significant increase in procoagulant markers (P-selectin and phosphatidylserine externalization) compared to healthy volunteers and healthy vaccinated volunteers. The generation of procoagulant platelets was PF4 and heparin dependent. We demonstrate the contribution of antibody-mediated platelet activation in the pathogenesis of VITT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.