Deep learning is one of the most exciting new areas in medical imaging. This review article provides a summary of the current clinical applications of deep learning for lesion detection, progression, and prediction of musculoskeletal disease on radiographs, computed tomography (CT), magnetic resonance imaging (MRI), and nuclear medicine. Deep-learning methods have shown success for estimating pediatric bone age, detecting fractures, and assessing the severity of osteoarthritis on radiographs. In particular, the high diagnostic performance of deep-learning approaches for estimating pediatric bone age and detecting fractures suggests that the new technology may soon become available for use in clinical practice. Recent studies have also documented the feasibility of using deep-learning methods for identifying a wide variety of pathologic abnormalities on CT and MRI including internal derangement, metastatic disease, infection, fractures, and joint degeneration. However, the detection of musculoskeletal disease on CT and especially MRI is challenging, as it often requires analyzing complex abnormalities on multiple slices of image datasets with different tissue contrasts. Thus, additional technical development is needed to create deep-learning methods for reliable and repeatable interpretation of musculoskeletal CT and MRI examinations. Furthermore, the diagnostic performance of all deep-learning methods for detecting and characterizing musculoskeletal disease must be evaluated in prospective studies using large image datasets acquired at different institutions with different imaging parameters and different imaging hardware before they can be implemented in clinical practice. Level of Evidence: 5 Technical Efficacy Stage: 2