We report the development and performance of a cold target recoil ion momentum spectrometer (COLTRIMS) setup at TIFR, which is built to study various atomic and molecular processes involving the interaction of slow, highly charged ions from an electron cyclotron resonance based ion accelerator. We give a detailed description of the experimental setup, as well as report some initial results on the electron-capture process in collisions of Ar8+ ions with helium and carbon monoxide targets. Here, we present the longitudinal momentum transfer and the sub-shell resolved Q-value spectrum in the case of 2, 4, and 6 keV/u Ar8+ beams in collision with helium. A longitudinal momentum resolution of 0.27 a.u. is achieved in the present system. We also report the state-selective scattering angle distributions for all the collision systems under investigation. We further discuss the fragmentation of the CO2+ molecular ions for different electron capture channels for the 5 keV/u Ar8+ beam. The combination of the COLTRIMS, along with the beam cleaner, the electrostatic deflectors, and the charge state analyzer, is shown to have certain advantages.