This paper investigates the event-triggered containment control problem of a class of uncertain nonlinear multiagent systems (MASs). By employing the local relative information, we design an adaptive event-triggered containment algorithm. The proposed containment algorithm can cope with the unavailability of global topology information and uncertain dynamics of follower agents. Therefore, the presented containment algorithm is free of global topology information, i.e., the designed algorithm is fully distributed. In addition, it is proved that Zeno behavior will not occur. At last, a numerical example is given to verify our event-triggered containment algorithm.