In this paper, we investigate the projective synchronization between two different time-delayed chaotic systems. A suitable controller is chosen using the active control approach. We relax some limitations of previous work, where projective synchronization of different chaotic systems can be achieved only in finite dimensional chaotic systems, so we can achieve projective synchronization of different chaotic systems in infinite dimensional chaotic systems. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective synchronization between two different time-delayed chaotic systems. The validity of the proposed method is demonstrated and verified by observing the projective synchronization between two well-known time-delayed chaotic systems; the Ikeda system and Mackey-Glass system. Numerical simulations fully support the analytical approach.
To fulfill the requirements for testing the photomultiplier tubes (PMTs) of the electromagnetic detector at the Large High Altitude Air Shower Observatory (LHAASO), a multi-functional PMT test bench with a two dimensional scanning system has been developed. With this 2D scanning system, 16 PMTs can be scanned simultaneously for characteristics tests, including uniformity, cathode transit time difference, single photo-electron spectrum, gain vs. high voltage, linear behavior and dark noise. The programmable hardware and intelligent software of the test bench make it convenient to use and provide reliable results. The test methods are described in detail and primary results are presented.
We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.