Epigallocatechin gallate (EGCG), the major biologically active compound in green tea, is a well-known chemoprevention agent. Although several reports have shown that EGCG exerts its anticancer activity by targeting specific cell signaling pathways, the underlying molecular mechanism(s) are only partially understood. In the present study, we report that EGCG had a profound antiproliferative effect on human lung cancer cells. EGCG inhibited anchorage-independent growth and induced cell cycle G0/G1 phase arrest. The mechanism underlying EGCG antitumor potency was mainly dependent on suppression of the EGFR signaling pathway. Short-term EGCG exposure substantially decreased EGF-induced EGFR, AKT and ERK1/2 activation. Moreover, long-term EGCG treatment not only inhibited total and membranous EGFR expression, but also markedly attenuated EGFR nuclear localization and expression of the downstream target gene cyclin D1, indicating that EGCG treatment suppressed EGFR transactivation. Additionally, knockdown of EGFR in lung cancer cells decreased their sensitivity to EGCG. Thus, inhibition of the EGFR signaling pathway may partly contribute to the anticancer activity of EGCG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.