The ongoing global novel coronavirus pneumonia COVID‐19 outbreak has engendered numerous cases of infection and death. COVID‐19 diagnosis relies upon nucleic acid detection; however, currently recommended methods exhibit high false‐negative rates and are unable to identify other respiratory virus infections, thereby resulting in patient misdiagnosis and impeding epidemic containment. Combining the advantages of targeted amplification and long‐read, real‐time nanopore sequencing, herein, nanopore targeted sequencing (NTS) is developed to detect SARS‐CoV‐2 and other respiratory viruses simultaneously within 6–10 h, with a limit of detection of ten standard plasmid copies per reaction. Compared with its specificity for five common respiratory viruses, the specificity of NTS for SARS‐CoV‐2 reaches 100%. Parallel testing with approved real‐time reverse transcription‐polymerase chain reaction kits for SARS‐CoV‐2 and NTS using 61 nucleic acid samples from suspected COVID‐19 cases show that NTS identifies more infected patients (22/61) as positive, while also effectively monitoring for mutated nucleic acid sequences, categorizing types of SARS‐CoV‐2, and detecting other respiratory viruses in the test sample. NTS is thus suitable for COVID‐19 diagnosis; moreover, this platform can be further extended for diagnosing other viruses and pathogens.
Single-walled carbon nanotubes (SWNTs) possess superior electronic and physical properties that make them ideal candidates for making next-generation electronic circuits that break the size limitation of current silicon-based technology. The first critical step in making a full SWNT electronic circuit is to make SWNT intramolecular junctions in a controlled manner. Although SWNT intramolecular junctions have been grown by several methods, they only grew inadvertently in most cases. Here, we report well-controlled temperature-mediated growth of intramolecular junctions in SWNTs. Specifically, by changing the temperature during growth, we found that SWNTs systematically form intramolecular junctions. This was achieved by a consistent variation in the SWNT diameter and chirality with changing growth temperature even though the catalyst particles remained the same. These findings provide a potential approach for growing SWNT intramolecular junctions at desired locations, sizes and orientations, which are important for making SWNT electronic circuits.
International audienceThis paper addresses a vehicle scheduling problem encountered in home health care logistics. It concerns the delivery of drugs and medical devices from the home care company's pharmacy to patients' homes, delivery of special drugs from a hospital to patients, pickup of bio samples and unused drugs and medical devices from patients. The problem can be considered as a special vehicle routing problem with simultaneous delivery and pickup and time windows, with four types of demands: delivery from depot to patient, delivery from a hospital to patient, pickup from a patient to depot and pickup from a patient to a medical lab. Each patient is visited by one vehicle and each vehicle visits each node at most once. Patients are associated with time windows and vehicles with capacity. Two mixed-integer programming models are proposed. We then propose a Genetic Algorithm (GA) and a Tabu Search (TS) method. The GA is based on a permutation chromosome, a split procedure and local search. The TS is based on route assignment attributes of patients, an augmented cost function, route re-optimization, and attribute-based aspiration levels. These approaches are tested on test instances derived from existing VRPTW benchmarks
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.