We have fabricated ballistic n-type carbon nanotube (CNT)-based field-effect transistors (FETs) by contacting semiconducting single wall CNTs using Sc. Together with the demonstrated ballistic p-type CNT FETs using Pd contacts, our work closes the gap for doping-free fabrication of CNT-based ballistic complementary metal-oxide semiconductor (CMOS) devices and circuits. We demonstrated the feasibility of this dopingfree CMOS technology by fabricating a simple CMOS inverter on a SiO 2 /Si substrate using the back-gate geometry, but in principle much more complicated CMOS circuits may be integrated on a CNT on any suitable insulator substrate using the top-gate geometry and high-K dielectrics. This CNT-based CMOS technology only requires the patterning of arrays of parallel semiconducting CNTs with moderately narrow diameter range, for example, 1.6−2.4 nm, which is within the reach of current nanotechnology. This may lead to the integration of CNT-based CMOS devices with increasing complexity and possibly find its way into the computers brain: the logic circuit.
Using the concept of "cloning", we report herein a rational approach to grow single-walled carbon nanotubes (SWNTs) with controlled chirality via an open-end growth mechanism. Specifically, by using open-end SWNTs as "seeds/catalysts" (without metal catalysts), "new/duplicate" SWNTs could be grown and cloned from the parent segments via an open-end growth mechanism. Using this strategy, we have measured more than 600 short seed segments and have found that the yield of cloning is relatively low (around 9%). This yield can be greatly improved up to 40% by growing SWNTs on quartz substrate. Atomic force microscopy and micro resonance Raman spectroscopy characterization indicate that the parent nanotube and the duplicate nanotube have the same structure. These findings provide a potential approach for growing SWNTs with controlled chirality, which are important for the application of SWNTs in nanoelectronics.
Single-walled carbon nanotubes (SWNTs) possess superior electronic and physical properties that make them ideal candidates for making next-generation electronic circuits that break the size limitation of current silicon-based technology. The first critical step in making a full SWNT electronic circuit is to make SWNT intramolecular junctions in a controlled manner. Although SWNT intramolecular junctions have been grown by several methods, they only grew inadvertently in most cases. Here, we report well-controlled temperature-mediated growth of intramolecular junctions in SWNTs. Specifically, by changing the temperature during growth, we found that SWNTs systematically form intramolecular junctions. This was achieved by a consistent variation in the SWNT diameter and chirality with changing growth temperature even though the catalyst particles remained the same. These findings provide a potential approach for growing SWNT intramolecular junctions at desired locations, sizes and orientations, which are important for making SWNT electronic circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.