Accurate analysis of sonic boom pressure signature using Computational Fluid Dynamics (CFD) is still a challenging task. In this paper, four benchmark cases including two axisymmetric body, a simple delta wing body and a full configuration includes fuselage, wing, tail, flow-through nacelles, and blade wing were computed with a Reynold-averaged Navier-Stokes (RANS) based flow solver to predicted the near field sonic boom signature. The computed results from CFD agree well with the measured data in wind tunnel experiment. The effects of geometry equivalent radius, grid size, turbulence model and spatial discretization schemes are investigated and discussed. I.