Emerging evidence indicates that in addition to the well-recognized antiviral RNA silencing, dsRNA elicits responses of pattern-triggered immunity (PTI), likely contributing plant resistance against virus infections. However, compared to bacterial and fungal elicitor-mediated PTI, the mode-of-action and signaling pathway of dsRNA-induced defense remain poorly characterized. Here, using multi-color in vivo imaging by GFP mobility, staining of callose and plasmodesmal marker lines, we show that dsRNA-induced PTI restricts the progression of virus infection by triggering callose deposition at plasmodesmata, thereby likely limiting the macromolecular transport through these cell-to-cell communication channels. The plasma membrane-resident kinase module of SERK1 and BIK1/PBL1, plasmodesmata-localized proteins PDLP1/2/3 and calmodulin-like CML41, and Ca2+ signals are involved in the dsRNA-induced signaling leading to callose deposition at plasmodesmata and antiviral defense. In addition, unlike classical bacterial elicitor flagellin, dsRNA does not trigger detectable reactive oxygen species (ROS) burst, further substantiating a partially shared immune signaling framework with distinct features triggered by different microbial patterns. Likely as a counteract strategy, viral movement proteins from different viruses suppress the dsRNA-induced host response leading to callose deposition to achieve infection. Thus, our data support the new model of how plant immune signaling constrains the virus movement by inducing callose deposition at plasmodesmata and how viruses counteract this layer of immunity.