Plant development and adaptation to environmental stresses are intimately associated with programmed cell death (PCD). Although some of the mechanisms regulating PCD [e.g., accumulation of reactive oxygen species (ROS)] are common among responses to different abiotic stresses, the pathways mediating salt-induced PCD remain largely uncharacterized. Here we report that overexpression of OsNAC2, which encodes a plant-specific transcription factor, promotes salt-induced cell death accompanied by the loss of plasma membrane integrity, nuclear DNA fragmentation, and changes to caspase-like activity. In OsNAC2-knockdown lines, cell death was markedly decreased in response to severe salt stress. Additionally, OsNAC2 expression was enhanced in rice seedlings exposed to a high NaCl concentration. Moreover, the results of quantitative real-time PCR, chromatin immunoprecipitation, dual-luciferase, and yeast one-hybrid assays indicated that OsNAC2 targeted genes that encoded an ROS scavenger (OsCOX11) and a caspase-like protease (OsAP37). Furthermore, K -efflux channels (OsGORK and OsSKOR) were clearly activated by OsNAC2. Overall, our results suggested that OsNAC2 accelerates NaCl-induced PCD and provide new insights into the mechanisms that affect ROS accumulation, plant caspase-like activity, and K efflux.