The microRNA-183/96/182 cluster is highly expressed in the retina and other sensory organs. To uncover its in vivo functions in the retina, we generated a knockout mouse model, designated "miR-183CGT/GT ," using a gene-trap embryonic stem cell clone. We provide evidence that inactivation of the cluster results in early-onset and progressive synaptic defects of the photoreceptors, leading to abnormalities of scotopic and photopic electroretinograms with decreased b-wave amplitude as the primary defect and progressive retinal degeneration. In addition, inactivation of the miR-183/96/ 182 cluster resulted in global changes in retinal gene expression, with enrichment of genes important for synaptogenesis, synaptic transmission, photoreceptor morphogenesis, and phototransduction, suggesting that the miR-183/96/182 cluster plays important roles in postnatal functional differentiation and synaptic connectivity of photoreceptors. M icroRNAs (miRNAs) are small, endogenous, noncoding, regulatory RNAs and represent a newly recognized level of gene-expression regulation (1-4). miRNAs have unique expression profiles in the developing and adult retina and are involved in normal development and functions of the retina in all species studied so far (5-12). miRNAs are dysregulated in the retina of retinal degenerative mouse models, suggesting their potential involvement in retinal degeneration (13,14). Conditional inactivation of dicer, an RNase III endonuclease required for miRNA maturation in cytosol (15), in the mouse retina resulted in alteration of retinal differentiation and optic-cup patterning, increased cell death, and disorganization of axons of retinal ganglion cells (16)(17)(18)(19), suggesting that miRNAs are important for normal development and functions of the mammalian retina. However, in vivo functions of individual miRNAs in the retina still are largely unknown.Previously, we identified a highly conserved, intergenic, sensory organ-specific, paralogous miRNA cluster, the miR-183/96/182 cluster (hereafter, miR-183/96/182), contained within an ∼4-kb genomic segment on mouse chr6qA3.3 (8, 9). In the adult retina, miR-183/96/182 is expressed specifically in all photoreceptors and in the inner nuclear layer (8, 10). Developmentally, its expression is minimal in the embryonic retina but increases dramatically after birth and peaks in the adult retina, suggesting a role for miR-183/ 96/182 in maturation and normal functioning of the adult retina (8, 9). Additionally, expression of miR-183/96/182 has a diurnal pattern, suggesting a potential role in rhythmic functions of the retina (8, 9). Recently, miR-183/96/182 also was shown to be light responsive, independent of the circadian cycle (20). Targeted deletion of miR-182 alone in mouse did not result in a discernible phenotype, suggesting functional compensation by miR-183 and miR-96 (21). Point mutations of miR-96 were reported to result in progressive, nonsyndromic hearing loss in both human (22) and mouse (23); however, there was no apparent retinal phenotype, an ob...