Purpose of review-The oculomotor periphery was classically regarded as a simple mechanism executing complex behaviors specified explicitly by neural commands. A competing view has emerged that many important aspects of ocular motility are properties of the extraocular muscles and their associated connective tissue pulleys. This review considers current concepts regarding aspects of ocular motility that are mechanically determined versus those that are specified explicitly as innervation.Recent findings-While it was established several years ago that the rectus extraocular muscles have connective tissue pulleys, recent functional imaging and histology has suggested that the rectus pulley array constitutes an inner mechanism, analogous to a gimbal, that is rotated torsionally around the orbital axis by an outer mechanism driven by the oblique extraocular muscles. This arrangement may account mechanically for several commutative aspects of ocular motor control, including Listing's Law, yet permits implementation of non-commutative motility. Recent human behavioral studies, as well as neurophysiology in monkeys, are consistent with implementation of Listing's Law in the oculomotor periphery, rather than centrally.Summary-Varied evidence now strongly supports the conclusion that Listing's Law and other important ocular kinematics are mechanically determined. This finding implies more limited possibilities for neural adaptation to some ocular motor pathologies, but indicates possibilities for surgical treatments.