Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Low-frequency repetitive transcranial magnetic stimulation (rTMS) has emerged as an effective intervention for alleviating symptoms of psychiatric disorders, particularly schizophrenia characterized by persistent auditory verbal hallucinations (AVH). However, the underlying mechanism of its action remain elusive. This study employed a randomized controlled design to investigate the impact of low-frequency rTMS on the neural connectivity at the stimulate site, specifically left temporoparietal junction (TPJ), in schizophrenia patients with suffering from AVH. Using Dynamic Causal Modeling (DCM), this study assessed changes in directed connectivity patterns and their correlations with clinical symptomatology. The results demonstrated significant improvements in AVH. Notably, significant changes in connectivity were observed, including both abnormal functional connectivity and effective connectivity among multiple brain regions. Particularly, the inhibition effects from the left precentral gyrus and left medial superior frontal gyrus to the left TPJ were closely associated with improvements in AVH. These findings underscore the potential of rTMS to effectively modulate neural pathways implicated in hallucinations in schizophrenia, thereby providing a neurobiological foundation for its therapeutic effects.
Low-frequency repetitive transcranial magnetic stimulation (rTMS) has emerged as an effective intervention for alleviating symptoms of psychiatric disorders, particularly schizophrenia characterized by persistent auditory verbal hallucinations (AVH). However, the underlying mechanism of its action remain elusive. This study employed a randomized controlled design to investigate the impact of low-frequency rTMS on the neural connectivity at the stimulate site, specifically left temporoparietal junction (TPJ), in schizophrenia patients with suffering from AVH. Using Dynamic Causal Modeling (DCM), this study assessed changes in directed connectivity patterns and their correlations with clinical symptomatology. The results demonstrated significant improvements in AVH. Notably, significant changes in connectivity were observed, including both abnormal functional connectivity and effective connectivity among multiple brain regions. Particularly, the inhibition effects from the left precentral gyrus and left medial superior frontal gyrus to the left TPJ were closely associated with improvements in AVH. These findings underscore the potential of rTMS to effectively modulate neural pathways implicated in hallucinations in schizophrenia, thereby providing a neurobiological foundation for its therapeutic effects.
Background and Hypotheses The causes of schizophrenia remain unclear, and research has been hindered by the lack of quantifiable standards. However, magnetic resonance imaging (MRI) is addressing these challenges, revealing critical neurobiological details and emphasizing its importance in both evaluation and treatment. Study Design First, we reviewed the progress of research on structural MRI (sMRI), functional MRI (fMRI), multimodal/multiomics analysis, artificial intelligence, and neuromodulation in first-episode schizophrenia (FES) over the past 5 years. Second, we summarize the current state of schizophrenia research funded by the National Natural Science Foundation of China (NSFC) to facilitate academic exchange and cooperation both domestically and internationally. Study Results sMRI has identified early neurodevelopmental biomarkers in FES patients, and fMRI has highlighted functional abnormalities across disease stages. Multimodal/multiomics analysis has revealed complex brain–neurobiology interactions. Neuromodulation techniques, which directly modulate neural activity in specific brain regions, offer promising long-term benefits for stabilizing conditions and enhancing patients’ quality of life. NSFC-funded analysis shows China is increasing its funding for schizophrenia research, though funding distribution remains uneven. The research focus has shifted from a single perspective on brain structure and function to multichannel, multimodal comprehensive analysis methods. This progress has driven the integration of machine learning-driven multiomics research, aiming to construct disease classification models, explore disease mechanisms, and guide treatment from multidimensional and interdisciplinary perspectives. Conclusions MRI technology has provided new perspectives for the diagnosis and treatment of schizophrenia, especially the neurobiological foundations of the disease. Support from the NSFC provides a scientific and financial basis for future research and treatment, heralding scientific discoveries and technological innovations in this field and bringing hope to schizophrenia patients.
Background and Hypothesis Respective abnormal structural connectivity (SC) and functional connectivity (FC) have been reported in individuals with schizophrenia. However, transmodal associations between SC and FC following antipsychotic treatment, especially in female schizophrenia, remain unclear. We hypothesized that increased SC-FC coupling may be found in female schizophrenia, and could be normalized after antipsychotic treatment. Study Design Sixty-four female drug-naïve patients with first-diagnosed schizophrenia treated with antipsychotic drugs for 8 weeks, and 55 female healthy controls (HCs) were enrolled. Magnetic resonance imaging (MRI) data were collected from HCs at baseline and from patients at baseline and after treatment. SC and FC were analyzed by network-based statistics, calculating nonzero SC-FC coupling of the whole brain and altered connectivity following treatment. Finally, an Elastic-net logistic regression analysis was employed to establish a predictive model for evaluating the clinical efficacy treatment. Study Results At baseline, female schizophrenia patients exhibited abnormal SC in cortico-cortical, frontal-limbic, frontal-striatal, limbic-striatal, and limbic-cerebellar connectivity compared to HCs, while FC showed no abnormalities. Following treatment, cortico-cortical, frontal-limbic, frontal-striatal, limbic-striatal, temporal-cerebellar, and limbic-cerebellar connectivity were altered in both SC and FC. Additionally, SC-FC coupling of altered connectivity was higher in patients at baseline than in HC, trending toward normalization after treatment. Furthermore, identified FC or/and SC predicted changes in psychopathological symptoms and cognitive impairment among female schizophrenia following treatment. Conclusions SC-FC coupling may be a potential predictive biomarker of treatment response. Cortico-cortical, frontal-limbic, frontal-striatal, limbic-striatal, temporal-cerebellar, and limbic-cerebellar could represent major targets for antipsychotic drugs in female schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.