Most proteins adopt a well defined three-dimensional structure; however, it is increasingly recognized that some proteins can exist with at least two stable conformations. Recently, a class of intracellular chloride ion channel proteins (CLICs) has been shown to exist in both soluble and integral membrane forms. The structure of the soluble form of CLIC1 is typical of a soluble glutathione S-transferase superfamily protein but contains a glutaredoxin-like active site. In this study we show that on oxidation CLIC1 undergoes a reversible transition from a monomeric to a non-covalent dimeric state due to the formation of an intramolecular disulfide bond (Cys-24 -Cys-59). We have determined the crystal structure of this oxidized state and show that a major structural transition has occurred, exposing a large hydrophobic surface, which forms the dimer interface. The oxidized CLIC1 dimer maintains its ability to form chloride ion channels in artificial bilayers and vesicles, whereas a reducing environment prevents the formation of ion channels by CLIC1. Mutational studies show that both Cys-24 and Cys-59 are required for channel activity.Chloride ion channels control a variety of cellular processes that are central to normal function and disease states (1). The CLIC 1 family is a recently identified class of Cl Ϫ channel proteins that consists of seven members (p64, parchorin, CLIC1-5) (2, 3). A conserved C-terminal CLIC module of ϳ240 amino acids is present in each member of the family with several members containing additional, unrelated Nterminal domains. Most CLICs are localized to intracellular membranes and have been linked to functions including apoptosis, pH, and cell cycle regulation (4 -6). The CLIC ion channels are unusual in that they possess both soluble and integral membrane forms (2). In this regard they are similar to some bacterial toxins and several classes of intracellular proteins including Bcl-x L and the annexins (7). Our understanding of how such dual natured proteins enter the membrane is limited by the dearth of high resolution structures for key states in this process.We have recently determined the crystal structure of a soluble monomeric form of CLIC1 (8) and found that it is a structural homologue of the GST superfamily of proteins (9). This soluble form of CLIC1 consists of two domains, the N-domain possessing a thioredoxin fold closely resembling glutaredoxin and an all ␣-helical C-domain, which is typical of the GST superfamily. CLIC1 contains an intact glutathione-binding site that was shown to covalently bind glutathione via a conserved CLIC cysteine residue, Cys-24. This led to the suggestion that CLIC1 function may be under redox control, possibly via reactive oxygen or nitrogen species.The structure and stoichiometry of the integral membrane form of the CLIC proteins is still unclear. Electrophysiology of purified, soluble (Escherichia coli-expressed) recombinant CLIC1 in reconstituted artificial bilayers shows that CLIC1 alone is sufficient for chloride ion channel formation (8, 1...