Most proteins adopt a well defined three-dimensional structure; however, it is increasingly recognized that some proteins can exist with at least two stable conformations. Recently, a class of intracellular chloride ion channel proteins (CLICs) has been shown to exist in both soluble and integral membrane forms. The structure of the soluble form of CLIC1 is typical of a soluble glutathione S-transferase superfamily protein but contains a glutaredoxin-like active site. In this study we show that on oxidation CLIC1 undergoes a reversible transition from a monomeric to a non-covalent dimeric state due to the formation of an intramolecular disulfide bond (Cys-24 -Cys-59). We have determined the crystal structure of this oxidized state and show that a major structural transition has occurred, exposing a large hydrophobic surface, which forms the dimer interface. The oxidized CLIC1 dimer maintains its ability to form chloride ion channels in artificial bilayers and vesicles, whereas a reducing environment prevents the formation of ion channels by CLIC1. Mutational studies show that both Cys-24 and Cys-59 are required for channel activity.Chloride ion channels control a variety of cellular processes that are central to normal function and disease states (1). The CLIC 1 family is a recently identified class of Cl Ϫ channel proteins that consists of seven members (p64, parchorin, CLIC1-5) (2, 3). A conserved C-terminal CLIC module of ϳ240 amino acids is present in each member of the family with several members containing additional, unrelated Nterminal domains. Most CLICs are localized to intracellular membranes and have been linked to functions including apoptosis, pH, and cell cycle regulation (4 -6). The CLIC ion channels are unusual in that they possess both soluble and integral membrane forms (2). In this regard they are similar to some bacterial toxins and several classes of intracellular proteins including Bcl-x L and the annexins (7). Our understanding of how such dual natured proteins enter the membrane is limited by the dearth of high resolution structures for key states in this process.We have recently determined the crystal structure of a soluble monomeric form of CLIC1 (8) and found that it is a structural homologue of the GST superfamily of proteins (9). This soluble form of CLIC1 consists of two domains, the N-domain possessing a thioredoxin fold closely resembling glutaredoxin and an all ␣-helical C-domain, which is typical of the GST superfamily. CLIC1 contains an intact glutathione-binding site that was shown to covalently bind glutathione via a conserved CLIC cysteine residue, Cys-24. This led to the suggestion that CLIC1 function may be under redox control, possibly via reactive oxygen or nitrogen species.The structure and stoichiometry of the integral membrane form of the CLIC proteins is still unclear. Electrophysiology of purified, soluble (Escherichia coli-expressed) recombinant CLIC1 in reconstituted artificial bilayers shows that CLIC1 alone is sufficient for chloride ion channel formation (8, 1...
CLIC1 (NCC27) is a member of the highly conserved class of chloride ion channels that exists in both soluble and integral membrane forms. Purified CLIC1 can integrate into synthetic lipid bilayers forming a chloride channel with similar properties to those observed in vivo. The structure of the soluble form of CLIC1 has been determined at 1.4-Å resolution. The protein is monomeric and structurally homologous to the glutathione S-transferase superfamily, and it has a redox-active site resembling glutaredoxin. The structure of the complex of CLIC1 with glutathione shows that glutathione occupies the redox-active site, which is adjacent to an open, elongated slot lined by basic residues. Integration of CLIC1 into the membrane is likely to require a major structural rearrangement, probably of the N-domain (residues 1-90), with the putative transmembrane helix arising from residues in the vicinity of the redox-active site. The structure indicates that CLIC1 is likely to be controlled by redox-dependent processes.Chloride ion channels, located both within the plasma membrane and other internal cell membranes (1, 2), are involved in diverse physiological processes. They are known to participate in the control of secretion and absorption of salt, regulation of membrane potentials, organellar acidification, and cell volume homeostasis (3). Malfunction in these channels can lead to severe disease states (4).Chloride channels fall into several classes based on their sequence relationships. The three best characterized classes are the ligand-gated receptor channels (␥-aminobutyric acid and glycine receptors), the cystic fibrosis transmembrane conductance regulator family, and the ClC chloride ion channels (1, 2). A new class of chloride ion channel, the "chloride intracellular channels" (CLICs), 1 has recently been characterized at a molecular level. To date, there are seven members of the CLIC family: CLIC1 (NCC27) (5), CLIC2 (6), CLIC3 (7), CLIC4 (8), CLIC5 (9), p64 (10), and parchorin (11). All of these proteins exist as soluble globular proteins that can form ion channels in organellar and plasma membranes (5,7,8,(12)(13)(14)(15). Five of the CLIC proteins are each composed of ϳ240 residues, while the longer p64 and parchorin consist of distinct amino-terminal domains followed by the 240-residue CLIC module. This module has recently been shown to share weak sequence homology with the glutathione S-transferase (GST) superfamily (16).The CLIC proteins are expressed in a wide variety of tissues and appear to have diverse physiological functions. p64 is associated with kidney function (17), while CLIC1 and CLIC4 appear to have a broad tissue distribution (5,8,18,19). Several CLICs interact with protein kinases (7,11,20). CLICs are associated with a variety of intracellular membranes including the nuclear membrane (5), the endoplasmic reticular membrane (8), large dense-core vesicles (19), mitochondria (21), trans-Golgi vesicles (22), and secretory vesicles (23). Parchorin forms the chloride channel in water-secreting cells,...
MX1 is a bending-magnet crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range from 8 to 18 keV to a focal spot at the sample position of 120 mm FWHM. The beamline endstation and ancillary equipment facilitate local and remote access for both chemical and biological macromolecular crystallography. Here, the design of the beamline and endstation are discussed. The beamline has enjoyed a full user program for the last seven years and scientific highlights from the user program are also presented.
. The structure of N-acetylgalactosamine-4-sulfatase reveals that residues conserved amongst the sulfatase family are involved in stabilizing the calcium ion and the sulfate ester in the active site. This suggests an archetypal fold for the family of sulfatases. A catalytic role is proposed for the post-translationally modified highly conserved cysteine residue. Despite a lack of any previously detectable sequence similarity to any protein of known structure, the large sulfatase domain that contains the active site closely resembles that of alkaline phosphatase: the calcium ion in sulfatase superposes on one of the zinc ions in alkaline phosphatase and the sulfate ester of Cys91 superposes on the phosphate ion found in the active site of alkaline phosphatase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.