Consider a nonuniformly hyperbolic map $$ T:M\rightarrow M $$
T
:
M
→
M
modelled by a Young tower with tails of the form $$ O(n^{-\beta }) $$
O
(
n
-
β
)
, $$ \beta >2 $$
β
>
2
. We prove optimal moment bounds for Birkhoff sums $$ \sum _{i=0}^{n-1}v\circ T^i $$
∑
i
=
0
n
-
1
v
∘
T
i
and iterated sums $$ \sum _{0\le i<j<n}v\circ T^i\, w\circ T^j $$
∑
0
≤
i
<
j
<
n
v
∘
T
i
w
∘
T
j
, where $$ v,w:M\rightarrow {{\mathbb {R}}} $$
v
,
w
:
M
→
R
are (dynamically) Hölder observables. Previously iterated moment bounds were only known for $$ \beta >5$$
β
>
5
. Our method of proof is as follows; (i) prove that $$ T$$
T
satisfies an abstract functional correlation bound, (ii) use a weak dependence argument to show that the functional correlation bound implies moment estimates. Such iterated moment bounds arise when using rough path theory to prove deterministic homogenisation results. Indeed, by a recent result of Chevyrev, Friz, Korepanov, Melbourne & Zhang we have convergence to an Itô diffusion for fast-slow systems of the form $$\begin{aligned} x^{(n)}_{k+1}=x_k^{(n)}+n^{-1}a(x_k^{(n)},y_k)+n^{-1/2}b(x_k^{(n)},y_k) , \quad y_{k+1}=Ty_k \end{aligned}$$
x
k
+
1
(
n
)
=
x
k
(
n
)
+
n
-
1
a
(
x
k
(
n
)
,
y
k
)
+
n
-
1
/
2
b
(
x
k
(
n
)
,
y
k
)
,
y
k
+
1
=
T
y
k
in the optimal range $$ \beta >2$$
β
>
2
.