Trichothecenes are mycotoxins produced by Trichoderma, Fusarium, and at least four other genera in the fungal order Hypocreales. Fusarium has a trichothecene biosynthetic gene (TRI) cluster that encodes transport and regulatory proteins as well as most enzymes required for the formation of the mycotoxins. However, little is known about trichothecene biosynthesis in the other genera. Here, we identify and characterize TRI gene orthologues (tri) in Trichoderma arundinaceum and Trichoderma brevicompactum. Our results indicate that both Trichoderma species have a tri cluster that consists of orthologues of seven genes present in the Fusarium TRI cluster. Organization of genes in the cluster is the same in the two Trichoderma species but differs from the organization in Fusarium. Sequence and functional analysis revealed that the gene (tri5) responsible for the first committed step in trichothecene biosynthesis is located outside the cluster in both Trichoderma species rather than inside the cluster as it is in Fusarium. Heterologous expression analysis revealed that two T. arundinaceum cluster genes (tri4 and tri11) differ in function from their Fusarium orthologues. The Tatri4-encoded enzyme catalyzes only three of the four oxygenation reactions catalyzed by the orthologous enzyme in Fusarium. The Tatri11-encoded enzyme catalyzes a completely different reaction (trichothecene C-4 hydroxylation) than the Fusarium orthologue (trichothecene C-15 hydroxylation). The results of this study indicate that although some characteristics of the tri/TRI cluster have been conserved during evolution of Trichoderma and Fusarium, the cluster has undergone marked changes, including gene loss and/or gain, gene rearrangement, and divergence of gene function.Trichothecenes are a group of over 200 sesquiterpenoidderived secondary metabolites that vary by the pattern of oxygenations and esterifications of a core tricyclic structure with an epoxide function. These metabolites are produced by species in at least six genera of the fungal order Hypocreales (class Sordariomycetes): Fusarium, Myrothecium, Spicellum, Stachybotrys, Trichoderma, and Trichothecium. Trichothecenes are considered mycotoxins because they are often found as contaminants in food and animal feed and they can induce vomiting, alimentary hemorrhaging, and dermatitis in humans and livestock. These symptoms most likely result from the ability of trichothecenes to inhibit protein synthesis (40) and/or to induce apoptosis in eukaryotic cells (45). Trichothecenes also can act as immunosuppressors (51) and neurotoxins (36). Trichothecenes are phytotoxic (17). Previously (56), we observed that overproduction of trichodermin in Trichoderma brevicompactum reduced tomato seed germination and plant growth while increasing the size of the lesions produced when the pathogen was artificially inoculated on tomato plants previously colonized by Trichoderma spp.