Sexual reproduction is the primary means of reproduction for the vast majority of macroscopic organisms, including almost all animals and plants. Sex chromosomes are predicted to play a central role in sexual dimorphism. Sex determination in spinach is controlled by a pair of sex chromosomes. However, the mechanisms of sex determination in spinach remain poorly understand. Here, we assembled the genomes of both a female (XX) and a male (YY) individual of spinach, and the genome sizes were 978 Mb with 28,320 predicted genes and 926 Mb with 26,537 predicted genes, respectively. Based on reported sex-linked markers, chromosomes 4 of the female and male genome were defined as the X and Y chromosomes, and a 10 Mb male-specific region of the Y chromosome (MSY) from approximately 95– 105 Mb, was identified that contains abundant transposable elements (92.32%). Importantly, a large-scale inversion of about 13 Mb in length was detected on the X chromosome, corresponding to ~9 Mb and ~4 Mb on the Y chromosome, which were located on both sides of the MSY with two distinct evolutionary strata. Almost all sex-linked/Y-specific markers were enriched on the inversions/MSY, suggesting that the flanked inversions might result in recombination suppression between the X and Y chromosomes to maintain the MSY. Forty-nine genes within the MSY had functional homologs elsewhere in the autosomal region, suggesting movement of genes onto the MSY. The X and Y chromosomes of spinach provide a valuable resource for investigating spinach sex chromosomes evolution from wild to cultivated spinach and also provide a broader understanding of the sex determination model in the Amaranthaceae family.