Background-Voltage-gated potassium (K ϩ ) channels encoded by KCNQ genes (Kv7 channels) have been identified in various rodent and human blood vessels as key regulators of vascular tone; however, nothing is known about the functional impact of these channels in vascular disease. We ascertained the effect of 3 structurally different activators of Kv7.2 through Kv7.5 channels (BMS-204352, S-1, and retigabine) on blood vessels from normotensive and hypertensive animals. Methods and Results-Precontracted thoracic aorta and mesenteric artery segments from normotensive rats were relaxed by all 3 Kv7 activators, with potencies of BMS-204352ϭS-1Ͼretigabine. We also tested these agents in the coronary circulation using the Langendorff heart preparation. BMS-204352 and S-1 dose dependently increased coronary perfusion at concentrations between 0.1 and 10 mol/L, whereas retigabine was effective at 1 to 10 mol/L. In addition, S-1 increased K ϩ currents in isolated mesenteric artery myocytes. The ability of these agents to relax precontracted vessels, increase coronary flow, or augment K ϩ currents was impaired considerably in tissues isolated from spontaneously hypertensive rats (SHRs). Of the 5 KCNQ genes, only the expression of KCNQ4 was reduced (Ϸ3.7 fold) in SHRs aorta. Kv7.4 protein levels were Ϸ50% lower in aortas and mesenteric arteries from spontaneously hypertensive rats compared with normotensive vessels. A similar attenuated response to S-1 and decreased Kv7.4 were observed in mesenteric arteries from mice made hypertensive by angiotensin II infusion compared with normotensive controls. Conclusions-In 2 different rat and mouse models of hypertension, the functional impact of Kv7 channels was dramatically downregulated. (Circulation. 2011;124:602-611.)Key Words: hypertension Ⅲ vasodilation Ⅲ KCNQ potassium channels Ⅲ gene expression P rimary hypertension is characterized by raised total peripheral resistance caused by increased arterial tone. 1 Evidence suggests increased vascular tone during hypertension is a result of a more depolarized membrane potential, which has been associated with a rise in intracellular calcium (Ca 2ϩ ). 2,3 As such, an understanding of the K ϩ channels that stabilize the resting membrane potential is crucial for delineating the pathogenesis of hypertension.
Clinical Perspective on p 611KCNQ1-5 genes encode for voltage-gated K ϩ channels (Kv7.1 through Kv7.5, respectively) that have an established physiological role in neurons, 4 -7 cardiomyocytes, 8 cochlea, 9 and some epithelia. 10 There is now a growing appreciation that Kv7 channels are important regulators of smooth muscle contractility in rodent and human blood vessels. [11][12][13] In all blood vessels studied, KCNQ1 and KCNQ4 expression appears to dominate, 11,12,14 -18 although our laboratory has shown a truncated variant of KCNQ5 is also readily expressed. 15,19 Modulation of these channels provokes profound changes in vascular smooth muscle membrane potential and consequently vascular tone. [13][14][15][16][17]20 Thus, the non...