Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder caused by a polyglutamine expansion within the Ataxin-2 (Atxn2) protein. Purkinje cells (PC) of the cerebellum fire irregularly and eventually die in SCA2. We show here that the type 2 small conductance calcium-activated potassium channel (SK2) play a key role in control of normal PC activity. Using cerebellar slices from transgenic SCA2 mice we demonstrate that SK channel modulators restore regular pacemaker activity of SCA2 PCs. Furthermore, we also show that oral delivery of a novel selective positive modulator of SK2/3 channels (NS13001) alleviates behavioural and neuropathological phenotypes of aging SCA2 transgenic mice. We conclude that SK2 channels constitute a novel target for SCA2 treatment and that the developed selective SK2/3 modulator NS13001 holds promise as a potential therapeutic agent for treatment of SCA2 and possibly other cerebellar ataxias.
Key Points• GlycoPEGylated demonstrates the same efficacy and prolonged effect in animal models as native FVIII.• Circulatory half-life of glycoPEGylated FVIII (N8-GP) is prolonged by approximately twofold in several species.Frequent infusions of intravenous factor VIII (FVIII) are required to prevent bleeding associated with hemophilia A. To reduce the treatment burden, recombinant FVIII with a longer half-life was developed without changing the protein structure. FVIII-polyethylene glycol (PEG) conjugates were prepared using an enzymatic process coupling PEG (ranging from 10 to 80 kDa) selectively to a unique O-linked glycan in the FVIII B-domain. Binding to von Willebrand factor (VWF) was maintained for all conjugates. Upon cleavage by thrombin, the B-domain and the associated PEG were released, generating activated FVIII (FVIIIa) with the same primary structure and specific activity as native FVIIIa. In both FVIII-and VWF-deficient mice, the half-life was found to increase with the size of PEG. In vivo potency and efficacy of FVIII conjugated with a 40-kDa PEG (N8-GP) and unmodified FVIII were not different. N8-GP had a longer duration of effect in FVIII-deficient mouse models, approximately a twofold prolonged half-life in mice, rabbits, and cynomolgus monkeys; however, the prolongation was less pronounced in rats. Binding capacity of N8-GP on human monocyte-derived dendritic cells was reduced compared with unmodified FVIII, resulting in several-fold reduced cellular uptake. In conclusion, N8-GP has the potential to offer efficacious prevention and treatment of bleeds in hemophilia A at reduced dosing frequency. (Blood. 2013;121(11):2108-2116
The effects of the K v 7 channel modulators retigabine (opener) and XE991 (blocker) on rat bladder function were investigated ex vivo and in vivo to assess the potential of K v 7 openers for the treatment of overactive bladder. In organ bath studies, capsaicin-stimulated rat urinary bladder rings were exposed to retigabine and XE991 and the effect on tension and amplitude was evaluated. In anaesthetized rats, retigabine (0.01-1 mg ⁄ kg, i.v.) effects on bladder function, in which overactivity was induced by continuous infusion of 0.5% acetic acid, were assessed. The effect of retigabine (10 mg ⁄ kg, p.o.) on cystometric parameters was also measured in conscious rats with capsaicin-induced irritated bladders. Localization of K v 7 subunits within bladder tissue was analysed by RT-qPCR and western blotting. In organ bath studies, retigabine robustly reduced capsaicin-induced contractility of bladder rings and this effect was blocked by XE991 confirming the specificity of action via K v 7 channels. In anaesthetized rats with acetic acid-irritated bladders, retigabine markedly increased bladder capacity with no concomitant reduction in blood pressure. Retigabine also reduced bladder pressure and delayed voiding in conscious rats with capsaicin-irritated bladders. K v 7
Calcium-activated potassium channels are attractive targets for the development of therapeutics for overactive bladder. In the current study, we addressed the role of calcium-activated potassium channels of small (SK; K Ca 2) and intermediate (IK; K Ca 3) conductance in bladder function pharmacologically. We identified and characterized a novel positive modulator of SK/IK channels, 4,5-dichloro-1,3-diethyl-1,3-dihydro-benzoimidazol-2-one (NS4591). In whole-cell patch-clamp experiments, NS4591 doubled IK-mediated currents at a concentration of 45 Ϯ 6 nM (n ϭ 16), whereas 530 Ϯ 100 nM (n ϭ 7) was required for doubling of SK3-mediated currents. In acutely dissociated bladder primary afferent neurons, the presence of SK channels was verified using apamin and 1-ethyl-2-benzimidazolinone. In these neurons, NS4591 (10 M) inhibited the number of action potentials generated by suprathreshold depolarizing pulses. NS4591 also reduced carbachol-induced twitches in rat bladder detrusor rings in an apamin-sensitive manner. In vivo, NS4591 (30 mg/kg) inhibited bladder overactivity in rats and cats induced by capsaicin and acetic acid, respectively. In conclusion, the present study supports the involvement of calcium-activated potassium channels in bladder function and identifies NS4591 as a potent modulator of IK and SK channels that is effective in animal models of bladder overactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.