A novel proof-of-concept model for chiral molecular structure determination using just the molecular formula and vibrational optical activity (VOA) spectra is presented. To verify this concept, the molecular formula of a desired compound is used to generate all possible chiral structural isomers and their VOA spectra are predicted. The similarity analyses of predicted VOA spectra were then carried out in two different ways: (a) similarity between VOA spectrum of one structural isomer with those of the rest, referred to as cross-correlations; (b) similarity between VOA spectra of all chiral structural isomers with the experimental VOA spectra of the desired compound. Three different molecular formulae, C 4 H 8 O, C 3 H 5 ClO, and C 6 H 10 O, and their chiral structural isomers (6, 9, and 75 respectively), were investigated. In each case, the correct chiral molecular structure of the desired compound was identified without ambiguity. Cross-correlation analysis revealed the uniqueness of VOA spectra in deducing the chiral molecular structure solely from its molecular formula. Different chiral structural isomers associated with the molecular formula CH 3 NO 2 were also found to have no significant cross-correlations between their VOA spectra, opening a pathway to detect and identify the elusive chiral Nhydroxyoxaziridine from its VOA spectra.