Background: N-heptyl-D-galactonamide (GalC7) is a small synthetic carbohydrate derivative that forms a biocompatible supramolecular hydrogel. In this study, the objective was to analyze more in-depth how neural cells differentiate in contact with GalC7. Method: Direct (ex vivo) cells of the fresh hippocampus and culture (In vitro) of the primary cells were investigated. In vitro, investigation performed under three conditions: on culture in neurospheres for 19 days, on culture in GalC7 gel for 7 days, and on culture in both neurospheres and GalC7 gel. Total RNA was isolated with TRIzol from each group, Sox8, Sox9, Sox10, Dcx, and Neurod1 expression levels were measured by qPCR. Result: Sox8 and Sox10, oligodendrocyte markers, and Sox9, an astrocyte marker, were expressed at a much higher level after 7 days of culture in GalC7 hydrogel compared to all other conditions. Dcx, a marker of neurogenesis, and Neurod1, a marker of neuronal differentiation, were expressed at better levels in the GalC7 gel culture compared to the neurosphere. Conclusions: These results show that the GalC7 hydrogel brings different and interesting conditions for inducing the differentiation and maturation of neural progenitor cells compared with polymer-based scaffolds or cell-only conditions. The differences observed open new perspectives in tissue engineering, induction, and transcript analysis.