Wetland mitigation is implemented to replace ecosystem functions provided by wetlands; however, restoration efforts frequently fail to establish equivalent levels of ecosystem services. Delivery of microbially mediated ecosystem functions, such as denitrification, is influenced by both the structure and activity of the microbial community. The objective of this study was to compare the relationship between soil and vegetation factors and microbial community structure and function in restored and reference wetlands within a mitigation bank. Microbial community composition was assessed using terminal restriction fragment length polymorphism targeting the 16S rRNA gene (total bacteria) and the nosZ gene (denitrifiers). Comparisons of microbial function were based on potential denitrification rates. Bacterial community structures differed significantly between restored and reference wetlands; denitrifier community assemblages were similar among reference sites but highly variable among restored sites throughout the mitigation bank. Potential denitrification was highest in the reference wetland sites. These data demonstrate that wetland restoration efforts in this mitigation bank have not successfully restored denitrification and that differences in potential denitrification rates may be due to distinct microbial assemblages observed in restored and reference (natural) wetlands. Further, we have identified gradients in soil moisture and soil fertility that were associated with differences in microbial community structure. Microbial function was influenced by bacterial community composition and soil fertility. Identifying soil factors that are primary ecological drivers of soil bacterial communities, especially denitrifying populations, can potentially aid the development of predictive models for restoration of biogeochemical transformations and enhance the success of wetland restoration efforts.Wetlands provide more ecosystem services (e.g., flood control, water purification, nutrient cycling, and habitat for wildlife) per hectare than any other ecosystem (16). Riparian wetlands, in particular, are sites of intense biogeochemical activity and play an important role in improving water quality, recycling nutrients, and detoxifying chemicals (41). Changing patterns of land use over the last century have resulted in the loss of over half of the wetlands in the contiguous United States (17) and about 60% of wetlands in the Midwestern United States (82). The loss of ecosystem services through conversion of wetlands to alternative (primarily agricultural) land uses exacerbates nutrient pollution and eutrophication of downstream ecosystems (57). Declines in wetland acreage have continued despite a federal policy goal of no-net-loss of wetland acreage and function adopted in 1990 (7, 55). Wetland mitigation projects provide compensation for impacted wetlands and aim to replace the critical functions provided by wetlands. Despite decades of wetland mitigation, however, restoration efforts frequently fail to reestablish desired...