The photoelectrochemical (PEC) decomposition of organic compounds in wastewater is investigated by using quantum chemical (DFT) methods to evaluate alternatives to water splitting for the production of renewable and sustainable hydrogen. Methanol is used as a model organic species for the theoretical evaluations of electrolysis on the surface of the widely available semiconductor hematite, α-Fe2 O3 , a widely studied photocatalyst. Three different α-Fe2 O3 surface terminations were investigated, including the predominant surface found in aqueous electrolytes, (OH)3 R. The PEC oxidation of methanol is energetically downhill, producing CO2 and protons. The protons are reduced to hydrogen on the cathode. Experimental PEC measurements were also performed for several polyalcoholic compounds, glycerol, erythritol, and xylitol, on α-Fe2 O3 as the photocatalyst and showed high incident-photon-to-current-efficiencies (IPCE) that were much greater than those of water splitting. Interestingly, high IPCEs were observed for hydrogen production from polyalcohols in the absence of any applied bias, which was not thought to be possible on hematite. These results support the potential application of PEC for hydrogen production by using widely available hematite for the PEC oxidation of selected components of organic wastewater present in large quantities from anthropogenic and industrial sources.